Cromatografía en capa fina
La cromatografia en capa fina se basa en la preparación de una capa, uniforme, de un absorbente mantenido sobre una placa, la cual puede ser de vidrio, aluminio u otro soporte. Los requisitos son un absorbente, placas , un dispositivo que mantenga las placas durante la extensión, otro para aplicar la capa de absorbente, y una cámara en la que se desarrollen las placas cubiertas.
La fase móvil es líquida y la fase estacionaria consiste en un sólido. La fase estacionaria será un componente polar y el eluyente será por lo general menos polar que la fase estacionaria, de forma que los componentes que se desplacen con mayor velocidad serán los menos polares.
Polaridad de los compuestos orgánicos en orden creciente:
hidrocarburos < olefinas < fluor < cloro < nitro < aldehído
aldehído < ester < alcohol < cetonas < aminas < ácidos < amidas
Cromatografía de intercambio iónico
La cromatografía de intercambio iónico (o cromatografía iónica) es un proceso que permite la separación de iones y moléculas polares basado en las propiedades de carga de las moléculas. Puede ser usada en casi cualquier tipo de molécula cargada, incluyendo grandes proteínas, pequeños nucleótidos y aminoácidos. La solución que debe inyectarse es usualmente llamada "muestra" y los componentes separados individualmente son llamados analitos. Es usada a menudo en purificación de proteínas, análisis de agua o control de calidad.
La cromatografía de intercambio iónico conserva los analitos basandóse en las interacciones de Coulomb. La fase estacionaria muestra en la superficie grupos funcionales iónicos que interactúan con iones de carga opuesta del analito. Este tipo de cromatografía se subdivide a su vez en la cromatografía de intercambio catiónico y cromatografía de intercambio aniónico:
* La cromatografía de intercambio catiónico retiene cationes cargados positivamente debido a que la fase estacionaria muestra un grupo funcional cargado negativamente, como un ácido fosfórico
* La cromatografía de intercambio de aniones retiene aniones usando grupos funcionales cargados positivamente, como un catión de amonio cuaternario.
R-A-H+ + M+ + B- <--> R-A-M+ + H+ + B-
Un muestra es introducida, de forma manual o con autosampler, dentro de un ciclo de muestras de volumen conocido. Una solución buffer acuosa conocida como fase móvil del bucle a la columna que contiene alguna forma de material en fase estacionaria. Esto es típicamente una resina o matriz de gel que consiste en agarosa o celulosa unido a grupos funcionales cargados. Los analitos objetivo (aniones o cationes) son conservados en la fase estacionariapero pueden ser eliminados incrementando la concentración de especies de similar carga que pueden desplazar los iones analitos de la fase estacionaria. Por ejemplo, en la cromatografía de intercambio catiónico, los analitos cargados positivamente pueden ser desplazados agregando iones de sodio cargados positivamente. Los analitos de interés pueden entonces ser detectados de varias maneras, típicamente por conductividad o por absorción de luz UV/Visible.
Para controlar un sistema CI, usualmente es necesario un Sistema de Datos Cromatográficos (Chromatography Data System, CDS). Además de los sistemas CI, algunos de estos CDS también pueden controlar sistemas de cromatografía de gas y HLPC.
Cromatografía líquida de alta eficacia
La Cromatografía líquida de alta eficacia o High performance liquid chromatography (HPLC) es un tipo de cromatografía en columna utilizada frecuentemente en bioquímica y química analítica. También se la denomina a veces Cromatografía líquida de alta presión o High pressure liquid chromatography (HPLC), aunque esta terminología se considera antigua y está en desuso. El HPLC es una técnica utilizada para separar los componentes de una mezcla basándose en diferentes tipos de interacciones químicas entre las sustancias analizadas y la columna cromatográfica.
Tipos de HPLC
Cromatografía de fase normal
La cromatografía de fase normal o "Normal phase HPLC" (NP-HPLC) fue el primer tipo de sistema HPLC utilizado en el campo de la química, y se caracteriza por separar los compuestos en base a su polaridad. Esta técnica utiliza una fase estacionaria polar y una fase móvil apolar, y se utiliza cuando el compuesto de interés es bastante polar. El compuesto polar se asocia y es retenido por la fase estacionaria. La fuerza de absorción aumenta a medida que aumenta la polaridad del compuesto y la interacción entre el compuesto polar y la fase estacionaria polar (en comparación a la fase móvil) aumenta el tiempo de retención.
La fuerza de interacción no sólo depende de los grupos funcionales del compuesto de interés, sino también en factores estericos de forma que los isómeros estructurales a menudo se pueden diferenciar el uno del otro. La utilización de disolventes más polares en la fase móvil disminuye el tiempo de retención de los compuestos mientras que los disolventes más hidrofóbicos tienden a aumentar el tiempo de retención.
La NP-HPLC cayó en desuso a los años setenta con el desarrollo del HPLC de fase reversa o Reversed-phase HPLC debido a la falta de reproductibilidad de los tiempos de retención puesto que los disolventes próticos cambiaban el estado de hidratación de la silica o alúmina de la cromatografía.
[editar] Cromatografía de fase reversa
La HPLC de fase reversa (RP-HPLC) consiste en una fase inmóvil apolar y una fase móvil de polaridad moderada. Una de las fases estacionarias más comunes de este tipo de cromatografía es la silica tratada con RMe2SiCl, dónde la R es una cadena alquil tal como C18H37 ó C8H17. El tiempo de retención es mayor para las moléculas de naturaleza apolar, mientras que las moléculas de carácter polar eluyen más rápidamente.
El tiempo de retención aumenta con la adición de disolvente apolar a la fase móvil y disminuye con la introducción de disolventes mas hidrofobicos. La cromatografía de fase reversa es tan utilizada que a menudo se lo denomina HPLC sin ninguna especificación adicional. La cromatografía de fase reversa se basa en el principio de las interacciones hidrofóbicas que resultan de las fuerzas de repulsión entre un disolvente relativamente polar, un compuesto relativamente apolar, y una fase estacionaria apolar. La fuerza conductora en la unión del compuesto a la fase estacionaria es la disminución del área del segmento apolar del analito expuesto al disolvente.Este efecto hidrofóbico está dominado por la disminución de la energía libre de la entropía asociada con la minimización de la interfase compuesto-disolvente polar. El efecto hidrofóbico disminuye con la adición de disolvente apolar a la fase móvil. Esto modifica el coeficiente de partición de forma que el compuesto se mueve por la columna y eluye.
Las características del compuesto de interés juegan un papel muy importante en la retención. En general, un compuesto con una cadena alquil larga se asocia con un tiempo de retención mayor porque aumenta la hidrofobicidad de la molécula. Aun así, las moléculas muy grandes pueden ver reducida la interacción entre la superficie del compuesto y la fase estacionaria. El tiempo de retención aumenta con el área de superficie hidrofóbica que suele ser inversamente proporcional al tamaño del compuesto. Los compuestos ramificados suelen eluir más rápidamente que sus isómeros lineales puesto que la superficie total se ve reducida.
Aparte de la hidrofobicidad de la fase móvil, otras modificaciones de la fase móvil pueden afectar la retención del compuesto; por ejemplo, la adición de sales inorgánicas provoca un aumento lineal en la tensión superficial, y como que la entropía de la interfase compuesto-disolvente está controlada precisamente por la tensión superficial, la adición de sales tiende a aumentar el tiempo de retención.
Otra variable importante es el pH puesto que puede cambiar la hidrofobicidad del compuesto. Por este motivo, la mayoría de métodos utilizan un tampón como el fosfato de sodio para controlar el valor del pH. Estos tampones controlan el pH, pero también neutralizan la carga o cualquiera resto de silica de la fase estacionaria que haya quedado expuesta y actúan como contraiones que neutralizan la carga del compuesto. El efecto de los tampones sobre la cromatografía puede variar, pero en general mejoran la separación cromatográfica.
Las columnas de fase reversa se echan a perder con menor facilidad que las columnas de silica normales. Aun así, muchas columnas de fase reversa están formadas por silica modificada con cadenas alquil y no se deben utilizar nunca con bases en medio acuoso puesto que éstas podrían dañar el esqueleto de silica subyacente. Las columnas se pueden utilizar en ácidos en medio acuoso pero no deberían estar expuestas demasiado tiempo al ácido porque puede corroer las partes metálicas del aparato de HPLC.
[editar] Cromatografía de exclusión molecular
La cromatografía de exclusión molecular, también conocida como cromatografía por filtración en gel, separa las partículas de la muestra en función de su tamaño. Generalmente se trata de una cromatografía de baja resolución de forma que se suele utilizar en los pasos finales del proceso de purificación. También es muy útil para la determinación de la estructura terciaria y la estructura cuaternaria de las proteínas purificadas.
La cromatografía de filtración molecular es un método de cromatografía en columna por el cual las moléculas se separan en solución según su peso molecular, o más precisamente, según su radio de Stokes.
En esta cromatografía, la fase estacionaria consiste en largos polímeros entrecruzados que forman una red tridimensional porosa. A los fines prácticos, la columnas se empaquetan con pequeñas partículas esferoidales formadas por esos polímeros entrecruzados. En consecuencia, estas partículas son porosas, y el tamaño de los poros es tal que algunas moléculas (las demasiado grandes) no podrán ingresar a esos poros, en tanto que otras (las suficientemente pequeñas) podrán pasar libremente. Los poros quedan conectados formando una malla o red, lo cual determina una serie de caminos a ser recorridos por las moléculas que acceden al interior de esta.
Cromatografía de intercambio iónico
En la cromatografía de intercambio iónico, la retención se basa en la atracción electrostática entre los iones en solución y las cargas inmovilizadas a la fase estacionaria. Los iones de la misma carga son excluidos mientras que los de carga opuesta son retenidos por la columna. Algunos tipos de intercambiadores iónicos son: i) Resinas de poliestireno, ii) intercambiadores iónicos de celulosa y dextranos (geles) y iii) Silica porosa o vidrio de tamaño de poro controlado. En general los intercambiadores iónicos favorecen la unión de iones elevada carga y radio pequeño. Un incremento en la concentración del contraión (respeto a los grupos funcionales de la resina) reduce el tiempo de retención. Un incremento en el pH reduce el tiempo de retención en las cromatografías de intercambio catiònico mientras que una disminución del pH reduce el tiempo de retención en las cromatografías de intercambio aniònic. Este tipo de cromatografía es ampliamente utilizado en las siguientes aplicaciones: purificación de agua, concentración de componentes traza, Ligand-exchange chromatography, Ion-exchange chromatography of proteins, High-pH anion-exchange chromatography of carbohydrates and oligosaccharides, etc.
Cromatografía basada en bioafinidad
Este tipo de cromatografía se basa en la capacidad de las sustancias biológicamente activas de formar complejos estables, específicos y reversibles. La formación de estos complejos implica la participación de fuerzas moleculares como las interacciones de Van der Waals, interacciones electrostáticas, interacciones dipolo-dipolo, interacciones hidrofóbicas y puentes de hidrógeno entre las partículas de la muestra y la fase estacionaria.
Cromatografía de gases
La cromatografía de gases es una técnica cromatográfica en la que la muestra se volatiliza y se inyecta en la cabeza de una columna cromatográfica. La elución se produce por el flujo de una fase móvil de gas inerte. A diferencia de los otros tipos de cromatografía, la fase móvil no interacciona con las moléculas del analito; su única función es la de transportar el analito a través de la columna.
Existen dos tipos de cromatografía de gases (GC): la cromatografía gas-sólido (GSC) y la cromatografía gas-líquido (GLC), siendo esta última la que se utiliza más ampliamente, y que se puede llamar simplemente cromatografía de gases (GC). En la GSC la fase estacionaria es sólida y la retención de los analitos en ella se produce mediante el proceso de adsorción. Precisamente este proceso de adsorción, que no es lineal, es el que ha provocado que este tipo de cromatografía tenga aplicación limitada, ya que la retención del analito sobre la superficie es semipermanente y se obtienen picos de elución con colas. Su única aplicación es la separación de especies gaseosas de bajo peso molecular. La GLC utiliza como fase estacionaria moléculas de líquido inmovilizadas sobre la superficie de un sólido inerte.
La GC se lleva a cabo en un cromatógrafo de gases. Éste consta de diversos componentes como el gas portador, el sistema de inyección de muestra, la columna (generalmente dentro de un horno), y el detector.
Espectrometría
Espectrometría - Prisma
Dispersión de luz en un prisma triangular
La espectroscopia surgió con el estudio de la interacción entre la radiación y la materia como función de la longitud de onda (λ). En un principio se refería al uso de la luz visible dispersada según su longitud de onda, por ejemplo por un prisma. Más tarde el concepto se amplió enormemente para comprender cualquier medida en función de la longitud de onda o de la frecuencia. Por tanto, la espectroscopia puede referirse a interacciones con partículas de radiación o a una respuesta a un campo alternante o frecuencia variante (ν). Una extensión adicional del alcance de la definición añadió la energía (E) como variable, al establecerse la relación E=hν para los fotones. Un gráfico de la respuesta como función de la longitud de onda (o más comúnmente la frecuencia) se conoce como espectro.
La espectrometría es la técnica espectroscópica para tasar la concentración o la cantidad de especies determinadas. En estos casos, el instrumento que realiza tales medidas es un espectrómetro o espectrógrafo.
La espectrometría a menudo se usa en física y química analítica para la identificación de sustancias mediante el espectro emitido o absorbido por las mismas.
La espectrometría también se usa mucho en astronomía y detección remota. La mayoría de los telescopios grandes tienen espectrómetros, que son usados para medir la composición química y propiedades físicas de los objetos astronómicos, o para medir sus velocidades a partir del efecto Doppler de sus líneas espectrales.
Centrifugacion
La centrifugación es un método por el cual se pueden separar sólidos de líquidos de diferente densidad mediante una fuerza rotativa , la cual imprime a la mezcla con una fuerza mayor que la de la gravedad, provocando la sedimentación de los sólidos o de las partículas de mayor densidad. Este es uno de los principios en los que la densidad: Todas lículas, por posa, sectadas por cualquier y una extensa variedad de técnicas derivadas de esta. Donde la fuerza es mayor a la gravedad.
CENTRIFUGACION GRADIENTE
Muestra : parte superior como una fina banda. Función del gradiente : estabilizar el medio, va de la parte superior con la d min hasta el fondo con la d max ->variación gradual de la densidad en el medio. Separación de los componentes de la muestra en bandas o zonas
CENTRIFUGACION DIFERENCIAL:
La muestra se distribuye homogénea- por todo el tubo. Separación de las partículas en función de su s. Capacidad de separación pobre, ya q como se distribuyen por todo el tubo en el pellet habrá de todas las partículas, abundaran las de mayor s ->no hay pureza.
Útil : aislamiento de células y orgánulos subcelulares
Para evitar la baja resolución podemos colocar la muestra en una banda estrecha, así todas las partículas parten de un mismo pto-> fraccionamiento. Se pueden producir corrientes de convección , reorganización del líquido -> evita usando gradientes de densidad.
Ultracentrifugación:
Permite estudiar las características de sedimentación de estructuras subcelulares (lisosomas, ribosomas y microsomas) y biomoléculas. Utiliza rotores (fijos o de columpio) y sistemas de monitoreo. Existen diferentes maneras de monitorear la sede las partículas en la ultracentrifugación, el más común de ellos mediante luz Uerfresones.
http://es.wikipedia.org/wiki/Centrifugaci%C3%B3n
Quimica II- Unidades
Seguidores
lunes, 26 de julio de 2010
Unidad III- Biomoleculas
-Bioelemtos
Bioelementos Primarios, Secundarios y Terciarios
Bioelementos primarios, que aparecen en una proporción media del 96% en la materia viva, y son carbono, oxigeno, hidrógeno, nitrógeno, fósforo y azufre. Estos elementos reúnen una serie de propiedades que los hacen adecuados para la vida:
• Forman entre ellos enlaces covalentes muy estables, compartiendo pares de electrones. El carbono, oxígeno y nitrógeno pueden formar enlaces dobles o triples.
• Facilitan la adaptación de los seres vivos al campo gravitatorio terrestre, ya que son los elementos más ligeros de la naturaleza.
Bioelementos secundarios, aparecen en una proporción próxima al 3,3%. Son: calcio, sodio, potasio, magnesio y cloro, desempeñando funciones de vital importancia en fisiología celular
Oligoelementos, micro constituyentes, o elementos vestigiales, que aparecen en la materia viva en proporción inferior al 0,1% siendo también esenciales para la vida: hierro, manganeso, cobre, zinc, flúor, yodo, boro, silicio, vanadio, cobalto, selenio, molibdeno y estaño. Aún participando en cantidades infinitesimales, no por ello son menos importantes, pues su carencia puede acarrear graves trastornos para los organismos.
Propiedades físico-químicas del agua
El agua presenta las siguientes propiedades físico-químicas:
Acción disolvente.
El agua es el líquido que más sustancias disuelve (disolvente universal), esta propiedad se debe a su capacidad para formar puentes de hidrógeno con otras sustancias, ya que estas se disuelven cuando interaccionan con las moléculas polares del agua.
Fuerza de cohesión entre sus moléculas.
Los puentes de hidrógeno mantienen a las moléculas fuertemente unidas, formando una estructura compacta que la convierte en un liquido casi incompresible.
Elevada fuerza de adhesión.
De nuevo los puentes de hidrógeno del agua son los responsables, al establecerse entre estos y otras moléculas polares, y es responsable, junto con la cohesión de la capilaridad, al cual se debe, en parte, la ascensión de la sabia bruta desde las raíces hasta las hojas.
Gran calor específico.
El agua absorbe grandes cantidades de calor que utiliza en romper los puentes de hidrógeno. Su temperatura desciente más lentamente que la de otros líquidos a medida que va liberando energía al enfriarse. Esta propiedad permite al citoplasma acuoso servir de proteccción para las moléculas orgánicas en los cambios bruscos de temperatura.
Elevado calor de vaporización.
A 20ºC se precisan 540 calorías para evaporar un gramo de agua, lo que da idea de la energía necesaria para romper los puentes de hidrógeno establecidos entre las moléculas del agua líquida y, posteriormente, para dotar a estas moléculas de la energía cinética suficiente para abandonar la fase líquida y pasar al estado de vapor.
Elevada constante dieléctrica.
Por tener moléculas dipolares, el agua es un gran medio disolvente de compuestos iónicos, como las sales minerales, y de compuestos covalentes polares como los glúcidos.
Bajo grado de ionización. De cada 107 de moléculas de agua, sólo una se encuentra ionizada.
Esto explica que la concentración de iones hidronio (H3O+) y de los iones hidroxilo (OH-) sea muy baja. Dado los bajos niveles de H3O+ y de OH-, si al agua se le añade un ácido o una base, aunque sea en poca cantidad, estos niveles varían bruscamente.
Sales Minerales
En función de su solubilidad se pueden distinguir:
Sales inorgánicas insolubles en agua.
Su función es de tipo plástico, formando estructuras de protección y sostén.
• Caparazones de crustáceos y moluscos (CaCO3) y caparazones silíceos de radiolarios y diatomeas
• Esqueleto interno en vertebrados (fosfato, cloruro,fluoruro y carbonato de calcio) y los dientes.
Sales inorgánicas solubles en agua.
La actividad biológica que proporcionan se debe a sus iones y desempeñan, fundamentalmente, las siguientes funciones:
• Funciones catalíticas. Algunos iones como Mn+2, Cu+2, Mg+2, Zn+2, etc. actúan como cofactores enzimáticos siendo necesarios para el desarrollo de la actividad catalítica de ciertas enzimas . El ion ferroso-férrico forma parte del grupo hemo de la hemoglobina y mioglobina, proteínas encargadas del transporte de oxígeno.
• Función tamponadora. Se lleva a cabo por los sistemas carbonato-bicarbonato y monofosfato-bifosfáto
-Glucidos o Carbohidratos
CONCEPTO Y CLASIFICACIÓN
Son biomoléculas constituidas por C, H, y O (a veces tienen N, S, o P)
El nombre de glúcido deriva de la palabra "glucosa" que proviene del vocablo griego glykys que significa dulce, aunque solamente lo son algunos monosacáridos y disacáridos. Su fórmula general suele ser (CH2O)n
CLASIFICACIÓN
MONOSACÁRIDOS U OSAS. Glúcidos de 3 a 8 átomos de C., con propiedades reductoras.
ÓSIDOS. Asociación de monosacáridos.
- HOLÓSIDOS
* OLIGOSACARIDO. De 2 a 10 monosacáridos. Resultan de especial interés disacáridos y trisacáridos.
* POLISACÁRIDOS. Mas de 10 monosacáridos.
- HETERÓSIDOS. Monosacáridos y otras sustancias no glucídicas.
-Nomenclatura
Se nombran haciendo referencia al nº de carbonos (3-12), terminado en el sufijo osa. Así para 3C: triosas, 4C:tetrosas, 5C:pentosas, 6C:hexosas, etc.
No son hidrolizables y a partir de 7C son inestables.
Presentan un esqueleto carbonado con grupos alcohol o hidroxilo y son portadores del grupo aldehído (aldosas) o cetónico (cetosas).
Propiedades: Son solubles en agua, dulces, cristalinos y blancos. Cuando son atravesados por luz polarizada desvían el plano de vibración de esta.
Estructura e isomerías. Los azúcares mas pequeños pueden escribirse por proyección en el plano (Proyección de Fischer) como se aprecia en la figura con indicación de la estructura tridimensional.
Estructura cíclica. Los grupos aldehídos o cetonas pueden reaccionar con un hidroxilo de la misma molécula convirtiéndola en anillo.
Principales monosacáridos.
ALDOSAS
CETOSAS
Triosas: Destacan el D-gliceraldehído y la dihidroxiacetona.
Pentosas: La D-ribosa forma parte del ácido ribonucleico y la 2-desoxirribosa del desoxirribonucleico. En la D-ribulosa destaca su importancia en la fotosíntesis.
Hexosas: La D-Glucosa se encuentra libre en los seres vivos. Es el mas extendido en la naturaleza, utilizandólo las células como fuente de energía. La D-fructosa se encuentra en los frutos y la D-Galactosa en la leche.
Enlaces N-glucosídico y O-glucosídico
Hay dos tipos de enlaces entre un monosacárido y otras moléculas.
El enlace N-Glucosídico se forma entre un -OH y un compuesto aminado, originando aminoazúcares.
El enlace O-Glucosídico se realiza entre dos -OH de dos monosacáridos.
Será -Glucosídico si el primer monosacárido es , y -Glucosídico si el primer monosacárido es B .
Disacáridos
Son oligosacáridos formados por dos monosacáridos. Son solubles en agua, dulces y cristalizables. Pueden hidrolizarse y ser reductores cuando el carbono anomérico de alguno de sus componentes no está implicado en el enlace entre los dos monosacáridos. La capacidad reductora de los glúcidos se debe a que el grupo aldehído o cetona puede oxidarse dando un ácido.
Principales disacáridos con interésbiológico.
Maltosa.- Es el azúcar de malta. Grano germinado de cebada que se utiliza en la elaboración de la cerveza. Se obtiene por hidrólisis de almidón y glucógeno. Posee dos moléculas de glucosa unidas por enlace tipo (1-4).
Isomaltosa.- Se obtiene por hidrólisis de la amilopectina y glucógeno. Se unen dos moléculas de glucosa por enlace tipo (1-6)
Celobiosa.- No se encuentra libre en la naturaleza. Se obtiene por hidrólisis de la celulosa. y está formado por dos moléculas de glucosa unidas por enlace (1-4).
Lactosa.- Es el azúcar de la leche de los mamíferos. Así, por ejemplo, la leche de vaca contiene del 4 al 5% de lactosa.
Se encuentra formada por la unión (1-4) de la -D-galactopiranosa (galactosa) y la -D-glucopiranosa (glucosa).
Sacarosa.- Es el azúcar de consumo habitual, se obtiene de la caña de azúcar y remolacha azucarera. Es el único disacárido no reductor, ya que los dos carbonos anoméricos de la glucosa y fructosa están implicados en el enlace G(1 ,2 ).
Polisacáridos
Están formados por la unión de muchos monosacáridos, de 11 a cientos de miles.
Sus enlaces son O-glucosídicos con pérdida de una molécula de agua por enlace.
Características
• Peso molecular elevado.
• No tienen sabor dulce.
• Pueden ser insolubles o formar dispersiones coloidales.
• No poseen poder reductor.
Sus funciones biológicas son estructurales (enlace -Glucosídico) o de reserva energética (enlace -Glucosídico). Puede ser:
Homopolisacáridos: formados por monosacáridos de un solo tipo.
- Unidos por enlace tenemos el almidón y el glucógeno.
- Unidos por enlace tenemos la celulosa y la quitina.
Heteropolisacárido: el polímero lo forman mas de un tipo de monosacárido.
- Unidos por enlace tenemos la pectina, la goma arábiga y el agar-agar.
Almidón.
Es un polisacárido de reserva en vegetales. Se trata de un polímero de glucosa, formado por dos tipos de moléculas: amilosa (30%), molécula lineal, que se encuentra enrollada en forma de hélice, y amilopectina (70%), molécula ramificada.
Glucógeno.
Es un polisacárido de reserva en animales, que se encuentra en el hígado (10%) y músculos (2%).
Presenta ramificaciones cada 8-12 glucosas con una cadena muy larga (hasta 300.000 glucosas). Se requieren dos enzimas para su hidrólisis (glucógeno-fosforilasa) y (1-6) glucosidasa, dando lugar a unidades de glucosa.
Celulosa.
Polisacárido estructural de los vegetales en los que constituye la pared celular.
Es el componente principal de la madera (el 50% es celulosa) algodón, cáñamo etc. El 50 % de la Materia Orgánica de la Biosfera es celulosa.
Quitina.
Forma el exoesqueleto en artrópodos y pared celular de los hongos. Es un polímero no ramificado de la N-acetilglucosamina con enlaces (1,4)
Pectina.
Es un heteropolisacárido con enlace . Junto con la celulosa forma parte de la pared vegetal. Se utiliza como gelificante en industria alimentaría (mermeladas).
Agar-Agar.
Es un heteropolisacárido con enlace . Se extrae de algas rojas o rodofíceas.
Se utiliza en microbiología para cultivos y en la industria alimentaria como espesante.
En las etiquetas de productos alimenticios lo puedes encontrar con el código E-406.
Goma arábiga y goma de cerezo.
Pertenecen al grupo de las gomas vegetales, son productos muy viscosos que cierran las heridas en los vegetables.
Glúcidos asociados a otras moléculas.
Las principales asociaciones son:
Heterósidos.
Unión de un monosacárido o de un pequeño oligosacárido con una o varias moléculas no glucídicas. Podemos citar:
• Digitalina: utilizada en el tratamiento de enfermedades vasculares; antocianósidos, responsables del color de las flores.
• Tanósidos; de propiedades astringentes.
• Estreptomicina; antibiótico.
• Nucleotidos derivados de la ribosa, como la desoxirribosa que forman los ácidos nucleicos.
Peptidoglucanos o mureina.
Constituyen la pared bacteriana, una estructura rígida que limita la entrada de agua por ósmosis evitando así la destrucción de la bacteria.
Proteoglucanos.
El 80% de sus moléculas están formadas por polisacáridos y una pequeña fracción proteica.
Son heteropolisacáridos animales como el ácido hialurónico (en tejido conjuntivo), heparina (sustancia anticoagulante), y condroitina (en cartílagos, huesos, tejido conjuntivo y córnea)
Glucoproteinas.
Moléculas formadas por una fracción glucídica (del 5 al 40%) y una fracción proteica unidas por enlaces covalentes. Las principales son las mucinas de secreción como las salivales, Glucoproteinas de la sangre, y Glucoproteinas de las membranas celulares.
Glucolípidos.
Están formados por monosacáridos u oligosacáridos unidos a lípidos. Se les puede encontrar en la membrana celular. Los mas conocidos son los cerebrósidos y gangliósidos
-Lipidos
Concepto y Clasificación
Con el nombre de lípidos (del griego lypos, grasa) denominamos a un grupo de compuestos orgánicos formados por C, H, y O mayoritariamente y ocasionalmente N, P y S.
Con características químicas diversas, pero propiedades físicas comunes: poco o nada solubles en agua, siéndolo en los disolventes orgánicos (éter, benceno, cloroformo, acetona, alcohol).
Clasificacion
Lipidos Insaponificables:
Terpenos
Esteroides
Hormonas Eicosanoides
Lipidos Saponificables
Grasas- aceites mantecas sebos
Ceras
Lipidos de Membrana- Glicerolipidos y Esfingolipidos.
Acidos Grasos
Saponificables y Insaponificables.
Estructura y características de los ácidos grasos
Son ácidos carboxílicos de cadena larga, suelen tener nº par de carbonos (14 a 22), los más abundantes tienen 16 y 18 carbonos.
• Los ácidos grasos son saturados cuando no poseen enlaces dobles, son flexibles y sólidos a temperatura ambiente.
• Los Insaturados o poliinsaturados si en la cadena hay dobles o triples enlaces, rígidos a nivel del doble enlace siendo líquidos aceitosos.
Propiedades físicas.
Solubilidad. Son moléculas bipolares o anfipáticas (del griego amphi, doble). La cabeza de la molécula es polar o iónica y, por tanto, hidrófila (-COOH). La cadena es apolar o hidrófoba (grupos -CH2- y -CH3 terminal).
Punto de fusión. En los saturados, el punto de fusión aumenta debido al nº de carbonos, mostrando tendencia a establecer enlaces de Van der Waals entre las cadenas carbonadas.
Propiedades químicas.
Esterificación. El ácido graso se une a un alcohol por enlace covalente formando un ester y liberando una molécula de agua.
Saponificación.
Reaccionan los álcalis o bases dando lugar a una sal de ácido graso que se denomina jabón. El aporte de jabones favorece la solubilidad y la formación de micelas de ácidos grasos.
Acilglicéridos, grasa simples o neutras
Son lípidos simples formados por glicerol esterificado por uno, dos, o tres ácidos grasos, en cuyo caso: monoacilglicérido, diacilglicérido o triacilglicérido respectivamente.
Clasificación. Atendiendo a la temperatura de fusión se clasifican en:
Aceites. Si los ácidos grasos son Insaturados o de cadena corta o ambas cosas a la vez, la molécula resultante es líquida a temperatura ambiente y se denomina aceite.
Se encuentra en las plantas oleaginosas: el fruto del olivo es rico en ácido oleico (monoinsaturado), las semillas del girasol, maíz, soja etc. son ricos en poliinsaturados como el linoleico, algunas plantas que viven en aguas frías contienen linolénico y eicosapentanoico, que también se acumulan en las grasas de los pescados azules que se alimentan de ellas como el salmón.
Mantecas. Son grasas semisólidas a temperatura ambiente. La fluidez de esta depende de su contenido en ácidos Insaturados y esto último relacionado a la alimentación.
Los animales que son alimentados con grasas insaturadas, generan grasas más fluidas y de mayor aprecio en alimentación. (Seria el caso de un cerdo alimentado con bellotas)
Sebos. Son grasas sólidas a temperatura ambiente, como las de cabra o buey. Están formadas por ácidos grasos saturados y cadena larga.
Lípidos complejos o de Membrana
En su composición intervienen ácidos grasos y otros componentes como alcoholes, glúcidos, ácido fosfórico, derivados aminados etc.
Son moléculas anfipáticas con una zona hidrófoba, en la que los ácidos grasos están unidos mediante enlaces ester a un alcohol (glicerina o esfingosina), y una zona hidrófila, originada por los restantes componentes no lipídicos que también están unidos al alcohol.
Glicerolípidos.
Poseen dos moléculas de ácidos grasos mediante enlaces ester a dos grupos alcohol de la glicerina (posiciones y ). Según sea el sustituyente unido al tercer grupo alcohol de la glicerina se forman los:
Gliceroglucolípidos
. Si se une un glúcido. Lípidos que se encuentran en membranas de bacterias y células vegetales.
Fosfolípidos. Se une el ácido fosfórico y constituye el ácido fosfatídico.
Esfingolípidos.
Todos ellos poseen una estructura derivada de la ceramida (formada por un ácido graso unido por enlace amida a la esfingosina)
Esfingoglucolípidos. Resultan de la unión de la ceramida y un conjunto de monosacáridos como la glucosa y galactosa entre otros.
Los más simples se denominan cerebrósidos y sólo tienen un monosacárido (glucosa o galactosa) unida a la ceramida. Los más complejos son los gangliósidos, que poseen un oligosacárido unido a la ceramida.
Estas moléculas forman parte de las membranas celulares y especialmente de la plasmática, donde se intercalan con los fosfolípidos.
Esfingofosfolípidos. El grupo alcohol de la ceramida se une a una molécula de ácido ortofosfórico que a su vez lo hace con otra de etanolamina o de colina. Así se originan las esfingomielinas muy abundantes en el tejido nervioso, donde forman parte de las vainas de mielina.
Céridos o ceras
Son ésteres de un ácido graso de cadena larga. Sólidos a temperatura ambiente, poseen sus dos extremos hidrófobos, lo que determina su función impermeabilizar y proteger.
Esteroides
Son lípidos que derivan del ciclopentano perhidrofenantreno, denominado gonano (antiguamente esterano). Su estructura la forman cuatro anillos de carbono (A, B, C y D). Los esteroides se diferencian entre sí por el nº y localización de sustituyentes.
Los esteroides más característicos son:
Esteroles. De todos ellos, el colesterol es el de mayor interés biológico. Forma parte de las membranas biológicas a las que confiere resistencia, por otra parte es el precursor de casi todos los demás esteroides.
Otros esteroles constituyen el grupo de la vitamina D o calciferol, imprescindible en la absorción intestinal del calcio y su metabolización.
Ácidos biliares. Derivan de los ácidos cólico, desoxicólico y quenodesoxicólico, cuyas sales emulsionan las grasas por lo que favorecen su digestión y absorción intestinal.
Hormonas esteroideas. Incluyen las de la corteza suprarrenal, que estimulan la síntesis del glucógeno y la degradación de grasas y proteínas (cortisol) y las que regulan la excreción de agua y sales minerales por las nefronas del riñón (aldosterona). También son de la misma naturaleza las hormonas sexuales masculinas y femeninas (andrógenos como la testosterona, estrógenos y progesterona) que controla la maduración sexual, comportamiento y capacidad reproductora.
Funciones de los lípidos
Reserva.
Constituyen la principal reserva energética del organismo. Sabido es que un gramo de grasa produce 9,4 Kc. En las reacciones metabólicas de oxidación, mientras que los prótidos y glúcidos solo producen 4,1 Kc./gr. La oxidación de los ácidos grasos en las mitocondrias produce una gran cantidad de energía.
Los ácidos grasos y grasas (Acilglicéridos) constituyen la función de reserva principal.
Estructural.
Forman las bicapas lipídicas de las membranas citoplasmáticas y de los orgánulos celulares. Fosfolípidos, colesterol, Glucolípidos etc. son encargados de cumplir esta función.
En los órganos recubren estructuras y les dan consistencia, como la cera del cabello. Otros tienen función térmica, como los acilglicéridos, que se almacenan en tejidos adiposos de animales de clima frío.
También protegen mecánicamente, como ocurre en los tejidos adiposos de la planta del pie y en la palma de la mano del hombre.
Resumiendo: la función estructural está encargada a Glucolípidos, Céridos, Esteroles, Acilglicéridos y Fosfolípidos.
Transportadora.
El transporte de lípidos, desde el intestino hasta el lugar de utilización o al tejido adiposo (almacenaje), se realiza mediante la emulsión de los lípidos por los ácidos biliares y los proteolípidos, asociaciones de proteínas específicas con triacilglicéridos, colesterol, fosfolípidos, etc., que permiten su transporte por sangre y linfa.
-Aminoacidos y Proteinas
Composición Química y Clasificación
Las proteinas son biopolímeros (macromoléculas orgánicas), de elevado peso molecular, constituidas basicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y), etc...
Estos elementos químicos se agrupan para formar unidades estructurales (monómeros) llamados AMINOACIDOS, a los cuales podriamos considerar como los "ladrillos de los edificios moleculares protéicos". Estos edificios macromoleculares se construyen y desmoronan con gran facilidad dentro de las células, y a ello debe precisamente la materia viva su capacidad de crecimiento, reparación y regulación.
Las proteinas son, en resumen, biopolímeros de aminoácidos y su presencia en los seres vivos es indispensable para el desarrollo de los múltiples procesos vitales.
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según esten formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos.
Los aminoácidos.
Son las unidades básicas que forman las proteinas. Su denominación responde a la composición química general que presentan, en la que un grupo amino (-NH2) y otro carboxilo o ácido (-COOH) se unen a un carbono (-C-). Las otras dos valencias de ese carbono quedan saturadas con un átomo de hidrógeno (-H) y con un grupo químico variable al que se denomina radical (-R).
Tridimensionalmente el carbono presenta una configuración tetraédrica en la que el carbono se dispone en el centro y los cuatro elementos que se unen a él ocupan los vértices. Cuando en el vértice superior se dispone el -COOH y se mira por la cara opuesta al grupo R, según la disposición del grupo amino (-NH2) a la izquierda o a la derecha del carbono se habla de " -L-aminoácidos o de " -D-aminoácidos respectivamente. En las proteinas sólo se encuentran aminoácidos de configuración L.
En la naturaleza existen unos 80 aminoácidos diferentes, pero de todos ellos sólo unos 20 forman parte de las proteinas.
Como vemos en la tabla tenemos aminoácidos apolares, polares sin carga y polares con carga.
Los aminoácidos que un organismo no puede sintetizar y, por tanto, tienen que ser suministrados con la dieta se denominan aminoácidos esenciales; y aquellos que el organismo puede sintetizar se llaman aminoácidos no esenciales.
Para la especie humana son esenciales ocho aminoácidos: treonina, metionina, lisina, valina, triptófano, leucina, isoleucina y fenilalanina (además puede añadirse la histidina como esencial durante el crecimiento, pero no para el adulto)
Propiedades de los aminoácidos.
Los aminoácidos son compuestos sólidos; incoloros; cristalizables; de elevado punto de fusión (habitualmente por encima de los 200 ºC); solubles en agua; con actividad óptica y con un comportamiento anfótero.
La actividad óptica se manifiesta por la capacidad de desviar el plano de luz polarizada que atraviesa una disolución de aminoácidos, y es debida a la asimetría del carbono , ya que se halla unido (excepto en la glicina) a cuatro radicales diferentes. Esta propiedad hace clasificar a los aminoácidos en Dextrogiros (+) si desvian el plano de luz polarizada hacia la derecha, y Levógiros (-) si lo desvian hacia la izquierda.
El comportamiento anfótero se refiere a que, en disolución acuosa, los aminoácidos son capaces de ionizarse, dependiendo del pH, como un ácido (cuando el pH es básico), como una base (cuando el pH es ácido) o como un ácido y una base a la vez (cuando el pH es neutro). En este último caso adoptan un estado dipolar iónico conocido como zwitterión.
El pH en el cual un aminoácido tiende a adoptar una forma dipolar neutra (igual número de cargas positivas que negativas) se denomina Punto Isoeléctrico. La solubilidad en agua de un aminoácido es mínima en su punto isoeléctrico.
Péptidos y Enlace peptídico.
Los péptidos son cadenas lineales de aminoácidos enlazados por enlaces químicos de tipo amídico a los que se denomina Enlace Peptídico. Así pues, para formar péptidos los aminoácidos se van enlazando entre sí formando cadenas de longitud y secuencia variable. Para denominar a estas cadenas se utilizan prefijos convencionales como:
a)Oligopéptidos.- si el nº de aminoácidos es menor 10.
• Dipéptidos.- si el nº de aminoácidos es 2.
• Tripéptidos.- si el nº de aminoácidos es 3.
• Tetrapéptidos.- si el nº de aminoácidos es 4.
• etc...
Polipéptidos o cadenas polipeptídicas.- si el nº de aminoácidos es mayor 10.
Estructura tridimensional.
La estructura tridimensional de una proteina es un factor determinante en su actividad biológica. Tiene un carácter jerarquizado, es decir, implica unos niveles de complejidad creciente que dan lugar a 4 tipos de estructuras: primaria, secundaria, terciaria y cuaternaria.
Cada uno de estos niveles se construye a partir del anterior.
La ESTRUCTURA PRIMARIA
esta representada por la sucesión lineal de aminoácidos que forman la cadena peptídica y por lo tanto indica qué aminoácidos componen la cadena y el orden en que se encuentran. El ordenamiento de los aminoácidos en cada cadena peptídica, no es arbitrario sino que obedece a un plan predeterminado en el ADN.
Esta estructura define la especificidad de cada proteina.
La ESTRUCTURA SECUNDARIA
está representada por la disposición espacial que adopta la cadena peptídica (estructura primaria) a medida que se sintetiza en los ribosomas. Es debida a los giros y plegamientos que sufre como consecuencia de la capacidad de rotación del carbono y de la formación de enlaces débiles (puentes de hidrógeno).
Las formas que pueden adoptar son:
Disposición espacial
estable determina formas en espiral (configuración -helicoidal y las hélices de colágeno)
Las -hélice aparecen en rojo.
Formas plegadas (configuración o de hoja plegada).
También existen secuencias en el polipéptido que no alcanzan una estructura secundaria bien definida y se dice que forman enroscamientos aleatorios. Por ejemplo, ver en las figuras anteriores los lazos que unen entre sí -hojas plegadas.
La ESTRUCTURA TERCIARIA
esta representada por los superplegamientos y enrrollamientos de la estructura secundaria, constituyendo formas tridimensionales geométricas muy complicadas que se mantienen por enlaces fuertes (puentes disulfuro entre dos cisteinas) y otros débiles (puentes de hidrógeno; fuerzas de Van der Waals; interacciones iónicas e interacciones hidrofóbicas).
Desde el punto de vista funcional, esta estructura es la más importante pues, al alcanzarla es cuando la mayoría de las proteinas adquieren su actividad biológica o función.
Muchas proteínas tienen estructura terciaria globular caracterizadas por ser solubles en disoluciones acuosas, como la mioglobina o muchos enzimas.
Sin embargo, no todas las proteinas llegan a formar estructuras terciarias. En estos casos mantienen su estructura secundaria alargada dando lugar a las llamadas proteinas filamentosas, que son insolubles en agua y disoluciones salinas siendo por ello idóneas para realizar funciones esqueléticas. Entre ellas, las más conocidas son el colágeno de los huesos y del tejido conjuntivo; la -queratina del pelo, plumas, uñas, cuernos, etc...; la fibroina del hilo de seda y de las telarañas y la elastina del tejido conjuntivo, que forma una red deformable por la tensión.
La ESTRUCTURA CUATERNARIA
está representada por el acoplamiento de varias cadenas polipeptídicas, iguales o diferentes, con estructuras terciarias (protómeros) que quedan autoensambladas por enlaces débiles, no covalentes. Esta estructura no la poseen, tampoco, todas las proteinas. Algunas que sí la presentan son: la hemoglobina y los enzimas alostéricos.
Propiedades de las proteínas
SOLUBILIDAD
Las proteinas son solubles en agua cuando adoptan una conformación globular. La solubilidad es debida a los radicales (-R) libres de los aminoácidos que, al ionizarse, establecen enlaces débiles (puentes de hidrógeno) con las moléculas de agua. Así, cuando una proteina se solubiliza queda recubierta de una capa de moléculas de agua (capa de solvatación) que impide que se pueda unir a otras proteinas lo cual provocaría su precipitación (insolubilización). Esta propiedad es la que hace posible la hidratación de los tejidos de los seres vivos.
CAPACIDAD AMORTIGUADORA
Las proteinas tienen un comportamiento anfótero y ésto las hace capaces de neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y por tanto liberar o retirar protones (H+) del medio donde se encuentran.
DESNATURALIZACION Y RENATURALIZACION
La desnaturalización de una proteina se refiere a la ruptura de los enlaces que mantenian sus estructuras cuaternaria, terciaria y secundaria, conservandose solamente la primaria. En estos casos las proteinas se transforman en filamentos lineales y delgados que se entrelazan hasta formar compuestos fibrosos e insolubles en agua. Los agentes que pueden desnaturalizar a una proteina pueden ser: calor excesivo; sustancias que modifican el pH; alteraciones en la concentración; alta salinidad; agitación molecular; etc... El efecto más visible de éste fenómeno es que las proteinas se hacen menos solubles o insolubles y que pierden su actividad biológica.
La mayor parte de las proteinas experimentan desnaturalizaciones cuando se calientan entre 50 y 60 ºC; otras se desnaturalizan también cuando se enfrian por debajo de los 10 a 15 ºC.
La desnaturalización puede ser reversible (renaturalización) pero en muchos casos es irreversible.
ESPECIFICIDAD
Es una de las propiedades más características y se refiere a que cada una de las especies de seres vivos es capaz de fabricar sus propias proteinas (diferentes de las de otras especies) y, aún, dentro de una misma especie hay diferencias protéicas entre los distintos individuos. Esto no ocurre con los glúcidos y lípidos, que son comunes a todos los seres vivos.
La enorme diversidad protéica interespecífica e intraespecífica es la consecuencia de las múltiples combinaciones entre los aminoácidos, lo cual está determinado por el ADN de cada individuo.
La especificidad de las proteinas explica algunos fenómenos biológicos como: la compatibilidad o no de transplantes de órgános; injertos biológicos; sueros sanguíneos; etc... o los procesos alérgicos e incluso algunas infecciones.
Funciones de las proteínas
Las proteinas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteinas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteinas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteinas estructurales se agregan a otras moléculas de la misma proteina para originar una estructura mayor. Sin embargo,otras proteinas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...
A continuación se exponen algunos ejemplos de proteinas y las funciones que desempeñan:
Función ESTRUCTURAL
-Algunas proteinas constituyen estructuras celulares:
• Ciertas glucoproteinas forman parte de las membranas celulares y actuan como receptores o facilitan el transporte de sustancias.
• Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.
-Otras proteinas confieren elasticidad y resistencia a órganos y tejidos:
• El colágeno del tejido conjuntivo fibroso.
• La elastina del tejido conjuntivo elástico.
• La queratina de la epidermis.
-Las arañas y los gusanos de seda segregan fibroina para fabricar las telas de araña y los capullos de seda, respectivamente.
Función ENZIMATICA
-Las proteinas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.
Función HORMONAL
-Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).
Función REGULADORA
-Algunas proteinas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).
Función HOMEOSTATICA
-Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.
Función DEFENSIVA
• Las inmunoglogulinas actúan como anticuerpos frente a posibles antígenos.
• La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.
• Las mucinas tienen efecto germicida y protegen a las mucosas.
• Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteinas fabricadas con funciones defensivas.
Función de TRANSPORTE
• La hemoglobina transporta oxígeno en la sangre de los vertebrados.
• La hemocianina transporta oxígeno en la sangre de los invertebrados.
• La mioglobina transporta oxígeno en los músculos.
• Las lipoproteinas transportan lípidos por la sangre.
• Los citocromos transportan electrones.
Función CONTRACTIL
• La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.
• La dineina está relacionada con el movimiento de cilios y flagelos.
Función DE RESERVA
• La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeina de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.
• La lactoalbúmina de la leche.
-Acidos Nucleicos
Caracteristicas Estructurales y Quimicas
Son biopolímeros formados por unidades llamadas monómeros, que son los nucleótidos.
Los nucleótidos están formados por la unión de:
Una pentosa, que puede ser la D-ribosa en el ARN; o la D-2- desoxirribosa en el ADN
Una base nitrogenada, que puede ser:
- Púrica, como la Guanina (G) y la Adenina (A)
- Pirimidínica, como la Timina (T), Citosina (C) y Uracilo (U)
Ácido fosfórico, que en la cadena de ácido nucleico une dos pentosas a través de una unión fosfodiester. Esta unión se hace entre el C-3´de la pentosa, con el C-5´de la segunda.
A la unión de una pentosa con una base nitrogenada se le llama nucleósido. Esta unión se hace mediante un enlace -glucosídico.
- Si la pentosa es una ribosa, tenemos un ribonucleósido. Estos tienen como bases nitrogenadas la adenina, guanina, citosina y uracilo.
- Si la pentosa es un desoxirribosa, tenemos un desoxirribonucleósido. Estos tienen como bases nitrogenadas la adenina, citosina, guanina y timina.
Tipos de ácidos nucleicos
Los ácidos nucleicos están formados, como ya se ha dicho anteriormente, por la polimerización de muchos nucleótidos, los cuales se unen de la siguiente manera: 3´-pentosa-5´-fosfato---3´-pentosa-5´fosfato-----
Cada molécula tiene una orientación definida, por lo que la cadena es 5´-> 3´.
Atendiendo a su estructura y composición existen dos tipos de ácidos nucleicos que son:
Ácido desoxirribonucleico o ADN o DNA
Ácido ribonucleico o ARN o RNA
ESTRUCTURA.
Está formado por la unión de muchos desoxirribonucleótidos. La mayoría de las moléculas de ADN poseen dos cadenas antiparalelas ( una 5´-3´y la otra 3´-5´) unidas entre sí mediante las bases nitrogenadas, por medio de puentes de hidrógeno.
La adenina enlaza con la timina, mediante dos puentes de hidrógeno, mientras que la citosina enlaza con la guanina, mediante tres puentes de hidrógeno.
El ADN es el portador de la informacion genética, se puede decir por tanto, que los genes están compuestos por ADN.
ESTRUCTURA PRIMARIA DEL ADN
Se trata de la secuencia de desoxirribonucleótidos de una de las cadenas. La información genética está contenida en el orden exacto de los nucleótidos.
ESTRUCTURA SECUNDARIA DEL ADN
Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fué postulada por Watson y Crick,basandose en:
- La difracción de rayos X que habían realizado Franklin y Wilkins
- La equivalencia de bases de Chargaff,que dice que la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´de una se enfrenta al extremo 5´de la otra.
Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick.
ESTRUCTURA TERCIARIA DEL ADN.
Se refiere a como se almacena el ADN en un volumen reducido. Varía según se trate de organismos procariontes o eucariontes:
a) En procariontes se pliega como una super-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de proteinas. Lo mismo ocurre en la mitocondrias y en los plastos.
b) En eucariontes el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteinas, como son las histonas y otras de naturaleza no histona (en los espermatozoides las proteinas son las protaminas). A esta unión de ADN y proteinas se conoce como cromatina, en la cual se distinguen diferentes niveles de organización:
- Nucleosoma
- Collar de perlas
- Fibra cromatínica
- Bucles radiales
- Cromosoma.
B.- DESNATURALIZACIÓN DEL ADN.
Cuando la temperatura alcanza el punto de fusión del ADN, la agitación térmica es capaz de separar las dos hebras y producir una desnaturalización. Este es un proceso reversible, ya que al bajar la temperatura se puede producir una renaturalización. En este proceso se rompen los puentes de hidrógeno que unen las cadenas y se produce la separación de las mismas, pero no se rompen los enlaces fosfodiester covalentes que forman la secuencia de la cadena.
La desnaturalización del ADN puede ocurrir, también, por variaciones en el pH.
Al enfriar lentamente puede renaturalizarse.
ARN o ácidos ribonucleico o RNA
ESTRUCTURA
Está formado por la unión de muchos ribonucleótidos, los cuales se unen entre ellos mediante enlaces fosfodiester en sentido 5´-3´( igual que en el ADN ).
Están formados por una sola cadena, a excepción del ARN bicatenario de los reovirus.
ESTRUCTURA PRIMARIA DEL ARN
Al igual que el ADN, se refiere a la secuencia de las bases nitrogenadas que constituyen sus nucleótidos.
ESTRUCTURA SECUNDARIA DEL ARN
Alguna vez, en una misma cadena, existen regiones con secuencias complementarias capaces de aparearse.
ESTRUCTURA TERCIARIA DE ARN
Es un plegamiento, complicado, sobre al estructura secundaria.
CLASIFICACIÓN DE LOS ARN.
Para clasificarlos se adopta la masa molecular media de sus cadenas, cuyo valor se deduce de la velocidad de sedimentación. La masa molecular y por tanto sus dimensiones se miden en svedberg (S). Según esto tenemos:
ARN MENSAJERO (ARNm)
Sus características son la siguientes:
- Cadenas de largo tamaño con estructura primaria.
- Se le llama mensajero porque transporta la información necesaria para la síntesis proteica.
- Cada ARNm tiene información para sintetizar una proteina determinada.
- Su vida media es corta.
En procariontes el extremo 5´posee un grupo trifosfato
En eucariontes en el extremo 5´posee un grupo metil-guanosina unido al trifosfato, y el el extremo 3´posee una cola de poli-A
En los eucariontes se puede distinguir también:
- Exones, secuencias de bases que codifican proteinas
- Intrones, secuencias sin información.
Un ARNm de este tipo ha de madurar (eliminación de intrones) antes de hacerse funcional. Antes de madurar, el ARNm recibe el nombre de ARN heterogeneonuclear (ARNhn ).
ARN RIBOSÓMICO (ARNr)
Sus principales características son:
- Cada ARNr presenta cadena de diferente tamaño, con estructura secundaria y terciaria.
- Forma parte de las subunidades ribosómicas cuando se une con muchas proteinas.
- Están vinculados con la síntesis de proteinas.
ARN NUCLEOLAR (ARNn)
Sus características principales son:
- Se sintetiza en el nucleolo.
- Posee una masa molecular de 45 S, que actua como recursor de parte del ARNr, concretamente de los ARNr 28 S (de la subunidad mayor), los ARNr 5,8 S (de la subunidad mayor) y los ARNr 18 S (de la subunidad menor)
ARNu
Sus principales características son:
- Son moléculas de pequeño tamaño
- Se les denomina de esta manera por poseer mucho uracilo en su composición
- Se asocia a proteinas del núcleo y forma ribonucleoproteinas pequeño nucleares (RNPpn) que intervienen en:
a) Corte y empalme de ARN
b) Maduración en los ARNm de los eucariontes
c) Obtención de ARNr a partir de ARNn 45 S.
ARN TRANSFERENTE (ARNt)
Sus principales características son.
- Son moléculas de pequeño tamaño
- Poseen en algunas zonas estructura secundaria, lo que va hacer que en las zonas donde no hay bases complementarias adquieran un aspecto de bucles, como una hoja de trebol.
- Los plegamientos se llegan a hacer tan complejos que adquieren una estructura terciaria
- Su misión es unir aminoácidos y transportarlos hasta el ARNm para sintetizar proteinas.
Electroforesis de ácidos nucleicos
Los ácidos nucleicos tienen la capacidad de migrar en un campo eléctrico y, por tanto, son susceptibles de ser separados por electroforesis, aunque con algunas variaciones con respecto de las proteínas:
Son moléculas de mayor tamaño: Lo que implica que el tamaño de poro que nos da la acrilamida puede ser demasiado pequeño.
Presenta gran cantidad de conformaciones y de tamaños: Lo que supone una gran variabilidad a la hora de diseñar los experimentos, ya que no es lo mismo separar cromosomas que simples nucleótidos.
En principio, es análoga a la electroforesis de proteínas en condiciones desnaturalizantes, salvo que aquí no hace falta el SDS para conferir la misma relación carga/masa es todas las moléculas (aunque se utiliza en el tampón de carga), ya que en los ácidos nucleicos la parte que confiere la carga es el grupo fosfato, y está presente de forma regular en la estructura.
En estas condiciones, y al contrario que las proteínas, si realizáramos una electroforesis libre, observaríamos como todas las moléculas migrarían hacia el polo positivo con la misma velocidad al tener igual. Esta propiedad no nos sirve de mucho, pero hay que decir que en un soporte en gel, como los que vamos a utilizar, las moléculas de ácido nucleico se separan en función de su tamaño.
BIBLIOGRAFIA
http://www.um.es/molecula/indice.htm
Bioelementos Primarios, Secundarios y Terciarios
Bioelementos primarios, que aparecen en una proporción media del 96% en la materia viva, y son carbono, oxigeno, hidrógeno, nitrógeno, fósforo y azufre. Estos elementos reúnen una serie de propiedades que los hacen adecuados para la vida:
• Forman entre ellos enlaces covalentes muy estables, compartiendo pares de electrones. El carbono, oxígeno y nitrógeno pueden formar enlaces dobles o triples.
• Facilitan la adaptación de los seres vivos al campo gravitatorio terrestre, ya que son los elementos más ligeros de la naturaleza.
Bioelementos secundarios, aparecen en una proporción próxima al 3,3%. Son: calcio, sodio, potasio, magnesio y cloro, desempeñando funciones de vital importancia en fisiología celular
Oligoelementos, micro constituyentes, o elementos vestigiales, que aparecen en la materia viva en proporción inferior al 0,1% siendo también esenciales para la vida: hierro, manganeso, cobre, zinc, flúor, yodo, boro, silicio, vanadio, cobalto, selenio, molibdeno y estaño. Aún participando en cantidades infinitesimales, no por ello son menos importantes, pues su carencia puede acarrear graves trastornos para los organismos.
Propiedades físico-químicas del agua
El agua presenta las siguientes propiedades físico-químicas:
Acción disolvente.
El agua es el líquido que más sustancias disuelve (disolvente universal), esta propiedad se debe a su capacidad para formar puentes de hidrógeno con otras sustancias, ya que estas se disuelven cuando interaccionan con las moléculas polares del agua.
Fuerza de cohesión entre sus moléculas.
Los puentes de hidrógeno mantienen a las moléculas fuertemente unidas, formando una estructura compacta que la convierte en un liquido casi incompresible.
Elevada fuerza de adhesión.
De nuevo los puentes de hidrógeno del agua son los responsables, al establecerse entre estos y otras moléculas polares, y es responsable, junto con la cohesión de la capilaridad, al cual se debe, en parte, la ascensión de la sabia bruta desde las raíces hasta las hojas.
Gran calor específico.
El agua absorbe grandes cantidades de calor que utiliza en romper los puentes de hidrógeno. Su temperatura desciente más lentamente que la de otros líquidos a medida que va liberando energía al enfriarse. Esta propiedad permite al citoplasma acuoso servir de proteccción para las moléculas orgánicas en los cambios bruscos de temperatura.
Elevado calor de vaporización.
A 20ºC se precisan 540 calorías para evaporar un gramo de agua, lo que da idea de la energía necesaria para romper los puentes de hidrógeno establecidos entre las moléculas del agua líquida y, posteriormente, para dotar a estas moléculas de la energía cinética suficiente para abandonar la fase líquida y pasar al estado de vapor.
Elevada constante dieléctrica.
Por tener moléculas dipolares, el agua es un gran medio disolvente de compuestos iónicos, como las sales minerales, y de compuestos covalentes polares como los glúcidos.
Bajo grado de ionización. De cada 107 de moléculas de agua, sólo una se encuentra ionizada.
Esto explica que la concentración de iones hidronio (H3O+) y de los iones hidroxilo (OH-) sea muy baja. Dado los bajos niveles de H3O+ y de OH-, si al agua se le añade un ácido o una base, aunque sea en poca cantidad, estos niveles varían bruscamente.
Sales Minerales
En función de su solubilidad se pueden distinguir:
Sales inorgánicas insolubles en agua.
Su función es de tipo plástico, formando estructuras de protección y sostén.
• Caparazones de crustáceos y moluscos (CaCO3) y caparazones silíceos de radiolarios y diatomeas
• Esqueleto interno en vertebrados (fosfato, cloruro,fluoruro y carbonato de calcio) y los dientes.
Sales inorgánicas solubles en agua.
La actividad biológica que proporcionan se debe a sus iones y desempeñan, fundamentalmente, las siguientes funciones:
• Funciones catalíticas. Algunos iones como Mn+2, Cu+2, Mg+2, Zn+2, etc. actúan como cofactores enzimáticos siendo necesarios para el desarrollo de la actividad catalítica de ciertas enzimas . El ion ferroso-férrico forma parte del grupo hemo de la hemoglobina y mioglobina, proteínas encargadas del transporte de oxígeno.
• Función tamponadora. Se lleva a cabo por los sistemas carbonato-bicarbonato y monofosfato-bifosfáto
-Glucidos o Carbohidratos
CONCEPTO Y CLASIFICACIÓN
Son biomoléculas constituidas por C, H, y O (a veces tienen N, S, o P)
El nombre de glúcido deriva de la palabra "glucosa" que proviene del vocablo griego glykys que significa dulce, aunque solamente lo son algunos monosacáridos y disacáridos. Su fórmula general suele ser (CH2O)n
CLASIFICACIÓN
MONOSACÁRIDOS U OSAS. Glúcidos de 3 a 8 átomos de C., con propiedades reductoras.
ÓSIDOS. Asociación de monosacáridos.
- HOLÓSIDOS
* OLIGOSACARIDO. De 2 a 10 monosacáridos. Resultan de especial interés disacáridos y trisacáridos.
* POLISACÁRIDOS. Mas de 10 monosacáridos.
- HETERÓSIDOS. Monosacáridos y otras sustancias no glucídicas.
-Nomenclatura
Se nombran haciendo referencia al nº de carbonos (3-12), terminado en el sufijo osa. Así para 3C: triosas, 4C:tetrosas, 5C:pentosas, 6C:hexosas, etc.
No son hidrolizables y a partir de 7C son inestables.
Presentan un esqueleto carbonado con grupos alcohol o hidroxilo y son portadores del grupo aldehído (aldosas) o cetónico (cetosas).
Propiedades: Son solubles en agua, dulces, cristalinos y blancos. Cuando son atravesados por luz polarizada desvían el plano de vibración de esta.
Estructura e isomerías. Los azúcares mas pequeños pueden escribirse por proyección en el plano (Proyección de Fischer) como se aprecia en la figura con indicación de la estructura tridimensional.
Estructura cíclica. Los grupos aldehídos o cetonas pueden reaccionar con un hidroxilo de la misma molécula convirtiéndola en anillo.
Principales monosacáridos.
ALDOSAS
CETOSAS
Triosas: Destacan el D-gliceraldehído y la dihidroxiacetona.
Pentosas: La D-ribosa forma parte del ácido ribonucleico y la 2-desoxirribosa del desoxirribonucleico. En la D-ribulosa destaca su importancia en la fotosíntesis.
Hexosas: La D-Glucosa se encuentra libre en los seres vivos. Es el mas extendido en la naturaleza, utilizandólo las células como fuente de energía. La D-fructosa se encuentra en los frutos y la D-Galactosa en la leche.
Enlaces N-glucosídico y O-glucosídico
Hay dos tipos de enlaces entre un monosacárido y otras moléculas.
El enlace N-Glucosídico se forma entre un -OH y un compuesto aminado, originando aminoazúcares.
El enlace O-Glucosídico se realiza entre dos -OH de dos monosacáridos.
Será -Glucosídico si el primer monosacárido es , y -Glucosídico si el primer monosacárido es B .
Disacáridos
Son oligosacáridos formados por dos monosacáridos. Son solubles en agua, dulces y cristalizables. Pueden hidrolizarse y ser reductores cuando el carbono anomérico de alguno de sus componentes no está implicado en el enlace entre los dos monosacáridos. La capacidad reductora de los glúcidos se debe a que el grupo aldehído o cetona puede oxidarse dando un ácido.
Principales disacáridos con interésbiológico.
Maltosa.- Es el azúcar de malta. Grano germinado de cebada que se utiliza en la elaboración de la cerveza. Se obtiene por hidrólisis de almidón y glucógeno. Posee dos moléculas de glucosa unidas por enlace tipo (1-4).
Isomaltosa.- Se obtiene por hidrólisis de la amilopectina y glucógeno. Se unen dos moléculas de glucosa por enlace tipo (1-6)
Celobiosa.- No se encuentra libre en la naturaleza. Se obtiene por hidrólisis de la celulosa. y está formado por dos moléculas de glucosa unidas por enlace (1-4).
Lactosa.- Es el azúcar de la leche de los mamíferos. Así, por ejemplo, la leche de vaca contiene del 4 al 5% de lactosa.
Se encuentra formada por la unión (1-4) de la -D-galactopiranosa (galactosa) y la -D-glucopiranosa (glucosa).
Sacarosa.- Es el azúcar de consumo habitual, se obtiene de la caña de azúcar y remolacha azucarera. Es el único disacárido no reductor, ya que los dos carbonos anoméricos de la glucosa y fructosa están implicados en el enlace G(1 ,2 ).
Polisacáridos
Están formados por la unión de muchos monosacáridos, de 11 a cientos de miles.
Sus enlaces son O-glucosídicos con pérdida de una molécula de agua por enlace.
Características
• Peso molecular elevado.
• No tienen sabor dulce.
• Pueden ser insolubles o formar dispersiones coloidales.
• No poseen poder reductor.
Sus funciones biológicas son estructurales (enlace -Glucosídico) o de reserva energética (enlace -Glucosídico). Puede ser:
Homopolisacáridos: formados por monosacáridos de un solo tipo.
- Unidos por enlace tenemos el almidón y el glucógeno.
- Unidos por enlace tenemos la celulosa y la quitina.
Heteropolisacárido: el polímero lo forman mas de un tipo de monosacárido.
- Unidos por enlace tenemos la pectina, la goma arábiga y el agar-agar.
Almidón.
Es un polisacárido de reserva en vegetales. Se trata de un polímero de glucosa, formado por dos tipos de moléculas: amilosa (30%), molécula lineal, que se encuentra enrollada en forma de hélice, y amilopectina (70%), molécula ramificada.
Glucógeno.
Es un polisacárido de reserva en animales, que se encuentra en el hígado (10%) y músculos (2%).
Presenta ramificaciones cada 8-12 glucosas con una cadena muy larga (hasta 300.000 glucosas). Se requieren dos enzimas para su hidrólisis (glucógeno-fosforilasa) y (1-6) glucosidasa, dando lugar a unidades de glucosa.
Celulosa.
Polisacárido estructural de los vegetales en los que constituye la pared celular.
Es el componente principal de la madera (el 50% es celulosa) algodón, cáñamo etc. El 50 % de la Materia Orgánica de la Biosfera es celulosa.
Quitina.
Forma el exoesqueleto en artrópodos y pared celular de los hongos. Es un polímero no ramificado de la N-acetilglucosamina con enlaces (1,4)
Pectina.
Es un heteropolisacárido con enlace . Junto con la celulosa forma parte de la pared vegetal. Se utiliza como gelificante en industria alimentaría (mermeladas).
Agar-Agar.
Es un heteropolisacárido con enlace . Se extrae de algas rojas o rodofíceas.
Se utiliza en microbiología para cultivos y en la industria alimentaria como espesante.
En las etiquetas de productos alimenticios lo puedes encontrar con el código E-406.
Goma arábiga y goma de cerezo.
Pertenecen al grupo de las gomas vegetales, son productos muy viscosos que cierran las heridas en los vegetables.
Glúcidos asociados a otras moléculas.
Las principales asociaciones son:
Heterósidos.
Unión de un monosacárido o de un pequeño oligosacárido con una o varias moléculas no glucídicas. Podemos citar:
• Digitalina: utilizada en el tratamiento de enfermedades vasculares; antocianósidos, responsables del color de las flores.
• Tanósidos; de propiedades astringentes.
• Estreptomicina; antibiótico.
• Nucleotidos derivados de la ribosa, como la desoxirribosa que forman los ácidos nucleicos.
Peptidoglucanos o mureina.
Constituyen la pared bacteriana, una estructura rígida que limita la entrada de agua por ósmosis evitando así la destrucción de la bacteria.
Proteoglucanos.
El 80% de sus moléculas están formadas por polisacáridos y una pequeña fracción proteica.
Son heteropolisacáridos animales como el ácido hialurónico (en tejido conjuntivo), heparina (sustancia anticoagulante), y condroitina (en cartílagos, huesos, tejido conjuntivo y córnea)
Glucoproteinas.
Moléculas formadas por una fracción glucídica (del 5 al 40%) y una fracción proteica unidas por enlaces covalentes. Las principales son las mucinas de secreción como las salivales, Glucoproteinas de la sangre, y Glucoproteinas de las membranas celulares.
Glucolípidos.
Están formados por monosacáridos u oligosacáridos unidos a lípidos. Se les puede encontrar en la membrana celular. Los mas conocidos son los cerebrósidos y gangliósidos
-Lipidos
Concepto y Clasificación
Con el nombre de lípidos (del griego lypos, grasa) denominamos a un grupo de compuestos orgánicos formados por C, H, y O mayoritariamente y ocasionalmente N, P y S.
Con características químicas diversas, pero propiedades físicas comunes: poco o nada solubles en agua, siéndolo en los disolventes orgánicos (éter, benceno, cloroformo, acetona, alcohol).
Clasificacion
Lipidos Insaponificables:
Terpenos
Esteroides
Hormonas Eicosanoides
Lipidos Saponificables
Grasas- aceites mantecas sebos
Ceras
Lipidos de Membrana- Glicerolipidos y Esfingolipidos.
Acidos Grasos
Saponificables y Insaponificables.
Estructura y características de los ácidos grasos
Son ácidos carboxílicos de cadena larga, suelen tener nº par de carbonos (14 a 22), los más abundantes tienen 16 y 18 carbonos.
• Los ácidos grasos son saturados cuando no poseen enlaces dobles, son flexibles y sólidos a temperatura ambiente.
• Los Insaturados o poliinsaturados si en la cadena hay dobles o triples enlaces, rígidos a nivel del doble enlace siendo líquidos aceitosos.
Propiedades físicas.
Solubilidad. Son moléculas bipolares o anfipáticas (del griego amphi, doble). La cabeza de la molécula es polar o iónica y, por tanto, hidrófila (-COOH). La cadena es apolar o hidrófoba (grupos -CH2- y -CH3 terminal).
Punto de fusión. En los saturados, el punto de fusión aumenta debido al nº de carbonos, mostrando tendencia a establecer enlaces de Van der Waals entre las cadenas carbonadas.
Propiedades químicas.
Esterificación. El ácido graso se une a un alcohol por enlace covalente formando un ester y liberando una molécula de agua.
Saponificación.
Reaccionan los álcalis o bases dando lugar a una sal de ácido graso que se denomina jabón. El aporte de jabones favorece la solubilidad y la formación de micelas de ácidos grasos.
Acilglicéridos, grasa simples o neutras
Son lípidos simples formados por glicerol esterificado por uno, dos, o tres ácidos grasos, en cuyo caso: monoacilglicérido, diacilglicérido o triacilglicérido respectivamente.
Clasificación. Atendiendo a la temperatura de fusión se clasifican en:
Aceites. Si los ácidos grasos son Insaturados o de cadena corta o ambas cosas a la vez, la molécula resultante es líquida a temperatura ambiente y se denomina aceite.
Se encuentra en las plantas oleaginosas: el fruto del olivo es rico en ácido oleico (monoinsaturado), las semillas del girasol, maíz, soja etc. son ricos en poliinsaturados como el linoleico, algunas plantas que viven en aguas frías contienen linolénico y eicosapentanoico, que también se acumulan en las grasas de los pescados azules que se alimentan de ellas como el salmón.
Mantecas. Son grasas semisólidas a temperatura ambiente. La fluidez de esta depende de su contenido en ácidos Insaturados y esto último relacionado a la alimentación.
Los animales que son alimentados con grasas insaturadas, generan grasas más fluidas y de mayor aprecio en alimentación. (Seria el caso de un cerdo alimentado con bellotas)
Sebos. Son grasas sólidas a temperatura ambiente, como las de cabra o buey. Están formadas por ácidos grasos saturados y cadena larga.
Lípidos complejos o de Membrana
En su composición intervienen ácidos grasos y otros componentes como alcoholes, glúcidos, ácido fosfórico, derivados aminados etc.
Son moléculas anfipáticas con una zona hidrófoba, en la que los ácidos grasos están unidos mediante enlaces ester a un alcohol (glicerina o esfingosina), y una zona hidrófila, originada por los restantes componentes no lipídicos que también están unidos al alcohol.
Glicerolípidos.
Poseen dos moléculas de ácidos grasos mediante enlaces ester a dos grupos alcohol de la glicerina (posiciones y ). Según sea el sustituyente unido al tercer grupo alcohol de la glicerina se forman los:
Gliceroglucolípidos
. Si se une un glúcido. Lípidos que se encuentran en membranas de bacterias y células vegetales.
Fosfolípidos. Se une el ácido fosfórico y constituye el ácido fosfatídico.
Esfingolípidos.
Todos ellos poseen una estructura derivada de la ceramida (formada por un ácido graso unido por enlace amida a la esfingosina)
Esfingoglucolípidos. Resultan de la unión de la ceramida y un conjunto de monosacáridos como la glucosa y galactosa entre otros.
Los más simples se denominan cerebrósidos y sólo tienen un monosacárido (glucosa o galactosa) unida a la ceramida. Los más complejos son los gangliósidos, que poseen un oligosacárido unido a la ceramida.
Estas moléculas forman parte de las membranas celulares y especialmente de la plasmática, donde se intercalan con los fosfolípidos.
Esfingofosfolípidos. El grupo alcohol de la ceramida se une a una molécula de ácido ortofosfórico que a su vez lo hace con otra de etanolamina o de colina. Así se originan las esfingomielinas muy abundantes en el tejido nervioso, donde forman parte de las vainas de mielina.
Céridos o ceras
Son ésteres de un ácido graso de cadena larga. Sólidos a temperatura ambiente, poseen sus dos extremos hidrófobos, lo que determina su función impermeabilizar y proteger.
Esteroides
Son lípidos que derivan del ciclopentano perhidrofenantreno, denominado gonano (antiguamente esterano). Su estructura la forman cuatro anillos de carbono (A, B, C y D). Los esteroides se diferencian entre sí por el nº y localización de sustituyentes.
Los esteroides más característicos son:
Esteroles. De todos ellos, el colesterol es el de mayor interés biológico. Forma parte de las membranas biológicas a las que confiere resistencia, por otra parte es el precursor de casi todos los demás esteroides.
Otros esteroles constituyen el grupo de la vitamina D o calciferol, imprescindible en la absorción intestinal del calcio y su metabolización.
Ácidos biliares. Derivan de los ácidos cólico, desoxicólico y quenodesoxicólico, cuyas sales emulsionan las grasas por lo que favorecen su digestión y absorción intestinal.
Hormonas esteroideas. Incluyen las de la corteza suprarrenal, que estimulan la síntesis del glucógeno y la degradación de grasas y proteínas (cortisol) y las que regulan la excreción de agua y sales minerales por las nefronas del riñón (aldosterona). También son de la misma naturaleza las hormonas sexuales masculinas y femeninas (andrógenos como la testosterona, estrógenos y progesterona) que controla la maduración sexual, comportamiento y capacidad reproductora.
Funciones de los lípidos
Reserva.
Constituyen la principal reserva energética del organismo. Sabido es que un gramo de grasa produce 9,4 Kc. En las reacciones metabólicas de oxidación, mientras que los prótidos y glúcidos solo producen 4,1 Kc./gr. La oxidación de los ácidos grasos en las mitocondrias produce una gran cantidad de energía.
Los ácidos grasos y grasas (Acilglicéridos) constituyen la función de reserva principal.
Estructural.
Forman las bicapas lipídicas de las membranas citoplasmáticas y de los orgánulos celulares. Fosfolípidos, colesterol, Glucolípidos etc. son encargados de cumplir esta función.
En los órganos recubren estructuras y les dan consistencia, como la cera del cabello. Otros tienen función térmica, como los acilglicéridos, que se almacenan en tejidos adiposos de animales de clima frío.
También protegen mecánicamente, como ocurre en los tejidos adiposos de la planta del pie y en la palma de la mano del hombre.
Resumiendo: la función estructural está encargada a Glucolípidos, Céridos, Esteroles, Acilglicéridos y Fosfolípidos.
Transportadora.
El transporte de lípidos, desde el intestino hasta el lugar de utilización o al tejido adiposo (almacenaje), se realiza mediante la emulsión de los lípidos por los ácidos biliares y los proteolípidos, asociaciones de proteínas específicas con triacilglicéridos, colesterol, fosfolípidos, etc., que permiten su transporte por sangre y linfa.
-Aminoacidos y Proteinas
Composición Química y Clasificación
Las proteinas son biopolímeros (macromoléculas orgánicas), de elevado peso molecular, constituidas basicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y), etc...
Estos elementos químicos se agrupan para formar unidades estructurales (monómeros) llamados AMINOACIDOS, a los cuales podriamos considerar como los "ladrillos de los edificios moleculares protéicos". Estos edificios macromoleculares se construyen y desmoronan con gran facilidad dentro de las células, y a ello debe precisamente la materia viva su capacidad de crecimiento, reparación y regulación.
Las proteinas son, en resumen, biopolímeros de aminoácidos y su presencia en los seres vivos es indispensable para el desarrollo de los múltiples procesos vitales.
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según esten formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos.
Los aminoácidos.
Son las unidades básicas que forman las proteinas. Su denominación responde a la composición química general que presentan, en la que un grupo amino (-NH2) y otro carboxilo o ácido (-COOH) se unen a un carbono (-C-). Las otras dos valencias de ese carbono quedan saturadas con un átomo de hidrógeno (-H) y con un grupo químico variable al que se denomina radical (-R).
Tridimensionalmente el carbono presenta una configuración tetraédrica en la que el carbono se dispone en el centro y los cuatro elementos que se unen a él ocupan los vértices. Cuando en el vértice superior se dispone el -COOH y se mira por la cara opuesta al grupo R, según la disposición del grupo amino (-NH2) a la izquierda o a la derecha del carbono se habla de " -L-aminoácidos o de " -D-aminoácidos respectivamente. En las proteinas sólo se encuentran aminoácidos de configuración L.
En la naturaleza existen unos 80 aminoácidos diferentes, pero de todos ellos sólo unos 20 forman parte de las proteinas.
Como vemos en la tabla tenemos aminoácidos apolares, polares sin carga y polares con carga.
Los aminoácidos que un organismo no puede sintetizar y, por tanto, tienen que ser suministrados con la dieta se denominan aminoácidos esenciales; y aquellos que el organismo puede sintetizar se llaman aminoácidos no esenciales.
Para la especie humana son esenciales ocho aminoácidos: treonina, metionina, lisina, valina, triptófano, leucina, isoleucina y fenilalanina (además puede añadirse la histidina como esencial durante el crecimiento, pero no para el adulto)
Propiedades de los aminoácidos.
Los aminoácidos son compuestos sólidos; incoloros; cristalizables; de elevado punto de fusión (habitualmente por encima de los 200 ºC); solubles en agua; con actividad óptica y con un comportamiento anfótero.
La actividad óptica se manifiesta por la capacidad de desviar el plano de luz polarizada que atraviesa una disolución de aminoácidos, y es debida a la asimetría del carbono , ya que se halla unido (excepto en la glicina) a cuatro radicales diferentes. Esta propiedad hace clasificar a los aminoácidos en Dextrogiros (+) si desvian el plano de luz polarizada hacia la derecha, y Levógiros (-) si lo desvian hacia la izquierda.
El comportamiento anfótero se refiere a que, en disolución acuosa, los aminoácidos son capaces de ionizarse, dependiendo del pH, como un ácido (cuando el pH es básico), como una base (cuando el pH es ácido) o como un ácido y una base a la vez (cuando el pH es neutro). En este último caso adoptan un estado dipolar iónico conocido como zwitterión.
El pH en el cual un aminoácido tiende a adoptar una forma dipolar neutra (igual número de cargas positivas que negativas) se denomina Punto Isoeléctrico. La solubilidad en agua de un aminoácido es mínima en su punto isoeléctrico.
Péptidos y Enlace peptídico.
Los péptidos son cadenas lineales de aminoácidos enlazados por enlaces químicos de tipo amídico a los que se denomina Enlace Peptídico. Así pues, para formar péptidos los aminoácidos se van enlazando entre sí formando cadenas de longitud y secuencia variable. Para denominar a estas cadenas se utilizan prefijos convencionales como:
a)Oligopéptidos.- si el nº de aminoácidos es menor 10.
• Dipéptidos.- si el nº de aminoácidos es 2.
• Tripéptidos.- si el nº de aminoácidos es 3.
• Tetrapéptidos.- si el nº de aminoácidos es 4.
• etc...
Polipéptidos o cadenas polipeptídicas.- si el nº de aminoácidos es mayor 10.
Estructura tridimensional.
La estructura tridimensional de una proteina es un factor determinante en su actividad biológica. Tiene un carácter jerarquizado, es decir, implica unos niveles de complejidad creciente que dan lugar a 4 tipos de estructuras: primaria, secundaria, terciaria y cuaternaria.
Cada uno de estos niveles se construye a partir del anterior.
La ESTRUCTURA PRIMARIA
esta representada por la sucesión lineal de aminoácidos que forman la cadena peptídica y por lo tanto indica qué aminoácidos componen la cadena y el orden en que se encuentran. El ordenamiento de los aminoácidos en cada cadena peptídica, no es arbitrario sino que obedece a un plan predeterminado en el ADN.
Esta estructura define la especificidad de cada proteina.
La ESTRUCTURA SECUNDARIA
está representada por la disposición espacial que adopta la cadena peptídica (estructura primaria) a medida que se sintetiza en los ribosomas. Es debida a los giros y plegamientos que sufre como consecuencia de la capacidad de rotación del carbono y de la formación de enlaces débiles (puentes de hidrógeno).
Las formas que pueden adoptar son:
Disposición espacial
estable determina formas en espiral (configuración -helicoidal y las hélices de colágeno)
Las -hélice aparecen en rojo.
Formas plegadas (configuración o de hoja plegada).
También existen secuencias en el polipéptido que no alcanzan una estructura secundaria bien definida y se dice que forman enroscamientos aleatorios. Por ejemplo, ver en las figuras anteriores los lazos que unen entre sí -hojas plegadas.
La ESTRUCTURA TERCIARIA
esta representada por los superplegamientos y enrrollamientos de la estructura secundaria, constituyendo formas tridimensionales geométricas muy complicadas que se mantienen por enlaces fuertes (puentes disulfuro entre dos cisteinas) y otros débiles (puentes de hidrógeno; fuerzas de Van der Waals; interacciones iónicas e interacciones hidrofóbicas).
Desde el punto de vista funcional, esta estructura es la más importante pues, al alcanzarla es cuando la mayoría de las proteinas adquieren su actividad biológica o función.
Muchas proteínas tienen estructura terciaria globular caracterizadas por ser solubles en disoluciones acuosas, como la mioglobina o muchos enzimas.
Sin embargo, no todas las proteinas llegan a formar estructuras terciarias. En estos casos mantienen su estructura secundaria alargada dando lugar a las llamadas proteinas filamentosas, que son insolubles en agua y disoluciones salinas siendo por ello idóneas para realizar funciones esqueléticas. Entre ellas, las más conocidas son el colágeno de los huesos y del tejido conjuntivo; la -queratina del pelo, plumas, uñas, cuernos, etc...; la fibroina del hilo de seda y de las telarañas y la elastina del tejido conjuntivo, que forma una red deformable por la tensión.
La ESTRUCTURA CUATERNARIA
está representada por el acoplamiento de varias cadenas polipeptídicas, iguales o diferentes, con estructuras terciarias (protómeros) que quedan autoensambladas por enlaces débiles, no covalentes. Esta estructura no la poseen, tampoco, todas las proteinas. Algunas que sí la presentan son: la hemoglobina y los enzimas alostéricos.
Propiedades de las proteínas
SOLUBILIDAD
Las proteinas son solubles en agua cuando adoptan una conformación globular. La solubilidad es debida a los radicales (-R) libres de los aminoácidos que, al ionizarse, establecen enlaces débiles (puentes de hidrógeno) con las moléculas de agua. Así, cuando una proteina se solubiliza queda recubierta de una capa de moléculas de agua (capa de solvatación) que impide que se pueda unir a otras proteinas lo cual provocaría su precipitación (insolubilización). Esta propiedad es la que hace posible la hidratación de los tejidos de los seres vivos.
CAPACIDAD AMORTIGUADORA
Las proteinas tienen un comportamiento anfótero y ésto las hace capaces de neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y por tanto liberar o retirar protones (H+) del medio donde se encuentran.
DESNATURALIZACION Y RENATURALIZACION
La desnaturalización de una proteina se refiere a la ruptura de los enlaces que mantenian sus estructuras cuaternaria, terciaria y secundaria, conservandose solamente la primaria. En estos casos las proteinas se transforman en filamentos lineales y delgados que se entrelazan hasta formar compuestos fibrosos e insolubles en agua. Los agentes que pueden desnaturalizar a una proteina pueden ser: calor excesivo; sustancias que modifican el pH; alteraciones en la concentración; alta salinidad; agitación molecular; etc... El efecto más visible de éste fenómeno es que las proteinas se hacen menos solubles o insolubles y que pierden su actividad biológica.
La mayor parte de las proteinas experimentan desnaturalizaciones cuando se calientan entre 50 y 60 ºC; otras se desnaturalizan también cuando se enfrian por debajo de los 10 a 15 ºC.
La desnaturalización puede ser reversible (renaturalización) pero en muchos casos es irreversible.
ESPECIFICIDAD
Es una de las propiedades más características y se refiere a que cada una de las especies de seres vivos es capaz de fabricar sus propias proteinas (diferentes de las de otras especies) y, aún, dentro de una misma especie hay diferencias protéicas entre los distintos individuos. Esto no ocurre con los glúcidos y lípidos, que son comunes a todos los seres vivos.
La enorme diversidad protéica interespecífica e intraespecífica es la consecuencia de las múltiples combinaciones entre los aminoácidos, lo cual está determinado por el ADN de cada individuo.
La especificidad de las proteinas explica algunos fenómenos biológicos como: la compatibilidad o no de transplantes de órgános; injertos biológicos; sueros sanguíneos; etc... o los procesos alérgicos e incluso algunas infecciones.
Funciones de las proteínas
Las proteinas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteinas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteinas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteinas estructurales se agregan a otras moléculas de la misma proteina para originar una estructura mayor. Sin embargo,otras proteinas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...
A continuación se exponen algunos ejemplos de proteinas y las funciones que desempeñan:
Función ESTRUCTURAL
-Algunas proteinas constituyen estructuras celulares:
• Ciertas glucoproteinas forman parte de las membranas celulares y actuan como receptores o facilitan el transporte de sustancias.
• Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.
-Otras proteinas confieren elasticidad y resistencia a órganos y tejidos:
• El colágeno del tejido conjuntivo fibroso.
• La elastina del tejido conjuntivo elástico.
• La queratina de la epidermis.
-Las arañas y los gusanos de seda segregan fibroina para fabricar las telas de araña y los capullos de seda, respectivamente.
Función ENZIMATICA
-Las proteinas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.
Función HORMONAL
-Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).
Función REGULADORA
-Algunas proteinas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).
Función HOMEOSTATICA
-Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.
Función DEFENSIVA
• Las inmunoglogulinas actúan como anticuerpos frente a posibles antígenos.
• La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.
• Las mucinas tienen efecto germicida y protegen a las mucosas.
• Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteinas fabricadas con funciones defensivas.
Función de TRANSPORTE
• La hemoglobina transporta oxígeno en la sangre de los vertebrados.
• La hemocianina transporta oxígeno en la sangre de los invertebrados.
• La mioglobina transporta oxígeno en los músculos.
• Las lipoproteinas transportan lípidos por la sangre.
• Los citocromos transportan electrones.
Función CONTRACTIL
• La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.
• La dineina está relacionada con el movimiento de cilios y flagelos.
Función DE RESERVA
• La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeina de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.
• La lactoalbúmina de la leche.
-Acidos Nucleicos
Caracteristicas Estructurales y Quimicas
Son biopolímeros formados por unidades llamadas monómeros, que son los nucleótidos.
Los nucleótidos están formados por la unión de:
Una pentosa, que puede ser la D-ribosa en el ARN; o la D-2- desoxirribosa en el ADN
Una base nitrogenada, que puede ser:
- Púrica, como la Guanina (G) y la Adenina (A)
- Pirimidínica, como la Timina (T), Citosina (C) y Uracilo (U)
Ácido fosfórico, que en la cadena de ácido nucleico une dos pentosas a través de una unión fosfodiester. Esta unión se hace entre el C-3´de la pentosa, con el C-5´de la segunda.
A la unión de una pentosa con una base nitrogenada se le llama nucleósido. Esta unión se hace mediante un enlace -glucosídico.
- Si la pentosa es una ribosa, tenemos un ribonucleósido. Estos tienen como bases nitrogenadas la adenina, guanina, citosina y uracilo.
- Si la pentosa es un desoxirribosa, tenemos un desoxirribonucleósido. Estos tienen como bases nitrogenadas la adenina, citosina, guanina y timina.
Tipos de ácidos nucleicos
Los ácidos nucleicos están formados, como ya se ha dicho anteriormente, por la polimerización de muchos nucleótidos, los cuales se unen de la siguiente manera: 3´-pentosa-5´-fosfato---3´-pentosa-5´fosfato-----
Cada molécula tiene una orientación definida, por lo que la cadena es 5´-> 3´.
Atendiendo a su estructura y composición existen dos tipos de ácidos nucleicos que son:
Ácido desoxirribonucleico o ADN o DNA
Ácido ribonucleico o ARN o RNA
ESTRUCTURA.
Está formado por la unión de muchos desoxirribonucleótidos. La mayoría de las moléculas de ADN poseen dos cadenas antiparalelas ( una 5´-3´y la otra 3´-5´) unidas entre sí mediante las bases nitrogenadas, por medio de puentes de hidrógeno.
La adenina enlaza con la timina, mediante dos puentes de hidrógeno, mientras que la citosina enlaza con la guanina, mediante tres puentes de hidrógeno.
El ADN es el portador de la informacion genética, se puede decir por tanto, que los genes están compuestos por ADN.
ESTRUCTURA PRIMARIA DEL ADN
Se trata de la secuencia de desoxirribonucleótidos de una de las cadenas. La información genética está contenida en el orden exacto de los nucleótidos.
ESTRUCTURA SECUNDARIA DEL ADN
Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fué postulada por Watson y Crick,basandose en:
- La difracción de rayos X que habían realizado Franklin y Wilkins
- La equivalencia de bases de Chargaff,que dice que la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´de una se enfrenta al extremo 5´de la otra.
Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick.
ESTRUCTURA TERCIARIA DEL ADN.
Se refiere a como se almacena el ADN en un volumen reducido. Varía según se trate de organismos procariontes o eucariontes:
a) En procariontes se pliega como una super-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de proteinas. Lo mismo ocurre en la mitocondrias y en los plastos.
b) En eucariontes el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteinas, como son las histonas y otras de naturaleza no histona (en los espermatozoides las proteinas son las protaminas). A esta unión de ADN y proteinas se conoce como cromatina, en la cual se distinguen diferentes niveles de organización:
- Nucleosoma
- Collar de perlas
- Fibra cromatínica
- Bucles radiales
- Cromosoma.
B.- DESNATURALIZACIÓN DEL ADN.
Cuando la temperatura alcanza el punto de fusión del ADN, la agitación térmica es capaz de separar las dos hebras y producir una desnaturalización. Este es un proceso reversible, ya que al bajar la temperatura se puede producir una renaturalización. En este proceso se rompen los puentes de hidrógeno que unen las cadenas y se produce la separación de las mismas, pero no se rompen los enlaces fosfodiester covalentes que forman la secuencia de la cadena.
La desnaturalización del ADN puede ocurrir, también, por variaciones en el pH.
Al enfriar lentamente puede renaturalizarse.
ARN o ácidos ribonucleico o RNA
ESTRUCTURA
Está formado por la unión de muchos ribonucleótidos, los cuales se unen entre ellos mediante enlaces fosfodiester en sentido 5´-3´( igual que en el ADN ).
Están formados por una sola cadena, a excepción del ARN bicatenario de los reovirus.
ESTRUCTURA PRIMARIA DEL ARN
Al igual que el ADN, se refiere a la secuencia de las bases nitrogenadas que constituyen sus nucleótidos.
ESTRUCTURA SECUNDARIA DEL ARN
Alguna vez, en una misma cadena, existen regiones con secuencias complementarias capaces de aparearse.
ESTRUCTURA TERCIARIA DE ARN
Es un plegamiento, complicado, sobre al estructura secundaria.
CLASIFICACIÓN DE LOS ARN.
Para clasificarlos se adopta la masa molecular media de sus cadenas, cuyo valor se deduce de la velocidad de sedimentación. La masa molecular y por tanto sus dimensiones se miden en svedberg (S). Según esto tenemos:
ARN MENSAJERO (ARNm)
Sus características son la siguientes:
- Cadenas de largo tamaño con estructura primaria.
- Se le llama mensajero porque transporta la información necesaria para la síntesis proteica.
- Cada ARNm tiene información para sintetizar una proteina determinada.
- Su vida media es corta.
En procariontes el extremo 5´posee un grupo trifosfato
En eucariontes en el extremo 5´posee un grupo metil-guanosina unido al trifosfato, y el el extremo 3´posee una cola de poli-A
En los eucariontes se puede distinguir también:
- Exones, secuencias de bases que codifican proteinas
- Intrones, secuencias sin información.
Un ARNm de este tipo ha de madurar (eliminación de intrones) antes de hacerse funcional. Antes de madurar, el ARNm recibe el nombre de ARN heterogeneonuclear (ARNhn ).
ARN RIBOSÓMICO (ARNr)
Sus principales características son:
- Cada ARNr presenta cadena de diferente tamaño, con estructura secundaria y terciaria.
- Forma parte de las subunidades ribosómicas cuando se une con muchas proteinas.
- Están vinculados con la síntesis de proteinas.
ARN NUCLEOLAR (ARNn)
Sus características principales son:
- Se sintetiza en el nucleolo.
- Posee una masa molecular de 45 S, que actua como recursor de parte del ARNr, concretamente de los ARNr 28 S (de la subunidad mayor), los ARNr 5,8 S (de la subunidad mayor) y los ARNr 18 S (de la subunidad menor)
ARNu
Sus principales características son:
- Son moléculas de pequeño tamaño
- Se les denomina de esta manera por poseer mucho uracilo en su composición
- Se asocia a proteinas del núcleo y forma ribonucleoproteinas pequeño nucleares (RNPpn) que intervienen en:
a) Corte y empalme de ARN
b) Maduración en los ARNm de los eucariontes
c) Obtención de ARNr a partir de ARNn 45 S.
ARN TRANSFERENTE (ARNt)
Sus principales características son.
- Son moléculas de pequeño tamaño
- Poseen en algunas zonas estructura secundaria, lo que va hacer que en las zonas donde no hay bases complementarias adquieran un aspecto de bucles, como una hoja de trebol.
- Los plegamientos se llegan a hacer tan complejos que adquieren una estructura terciaria
- Su misión es unir aminoácidos y transportarlos hasta el ARNm para sintetizar proteinas.
Electroforesis de ácidos nucleicos
Los ácidos nucleicos tienen la capacidad de migrar en un campo eléctrico y, por tanto, son susceptibles de ser separados por electroforesis, aunque con algunas variaciones con respecto de las proteínas:
Son moléculas de mayor tamaño: Lo que implica que el tamaño de poro que nos da la acrilamida puede ser demasiado pequeño.
Presenta gran cantidad de conformaciones y de tamaños: Lo que supone una gran variabilidad a la hora de diseñar los experimentos, ya que no es lo mismo separar cromosomas que simples nucleótidos.
En principio, es análoga a la electroforesis de proteínas en condiciones desnaturalizantes, salvo que aquí no hace falta el SDS para conferir la misma relación carga/masa es todas las moléculas (aunque se utiliza en el tampón de carga), ya que en los ácidos nucleicos la parte que confiere la carga es el grupo fosfato, y está presente de forma regular en la estructura.
En estas condiciones, y al contrario que las proteínas, si realizáramos una electroforesis libre, observaríamos como todas las moléculas migrarían hacia el polo positivo con la misma velocidad al tener igual. Esta propiedad no nos sirve de mucho, pero hay que decir que en un soporte en gel, como los que vamos a utilizar, las moléculas de ácido nucleico se separan en función de su tamaño.
BIBLIOGRAFIA
http://www.um.es/molecula/indice.htm
Unidad II- Quimica Organica
Nomenclatura IUPAQ
Debido al gran número de compuestos, la química orgánica ha desarrollado su propio sistema de nomenclatura que relaciona las fórmulas de los compuestos y sus nombres. Aún así se sigue utilizando el sistema IUPAC.
Los nombres de los compuestos deben ser sistemáticos, deben asignarse mediante un sistema de normas, de tal manera que a partir del nombre pueda deducirse su estructura, y a partir de la estructura poder dar el nombre.
Se utilizan prefijos para indicar el número de carbonos del compuesto. A continuación verá los principales:
Met-1
Et-2
Prp-3
But-4
Pent-5
El uso de los prefijos facilita la nomenclatura de los compuesto, asi podemos poner varios prefijos en cadena hasta nombrar a todos los grupos funcionales presentes. En el caso de los sufijos solo se puede usar uno, para evitar confusiones.
El problema está en decidir cual de los grupos se le nombrará como sufijo. Para esto existe una regla en la cual los grupos funcionales se acomodan por orden de oxidación y el que tenga mayor orden será el que se usa como sufijo.
El grupo funcional que se encuentre más abajo de la tabla será el de mayor orden de prioridad y se usará como sufijo Si mas de un grupo funcional se encuentra presente el que tenga mayor prioridad se usará como sufijo y los otros como prefijos
Son aquellos donde el carbono esta unido a 3 hidrógenos y algún radical
Ejemplo:
CH3-OH - Metanol
Son aquellos donde el carbono esta unido a dos hidrógenos y dos radicales
Ejemplo:
OH-CH2-OH - Metadiol
Son aquellos donde el carbono esta unido a un hidrogeno y 3 radicales
Alcanos
Son hidrocarburos saturados o moléculas orgánicas formados únicamente por átomos de carbono e hidrogeno, sin grupos funcionales como el carbonilo (-CO), carboxilo (-COOH), Amida (-CON=) etc.
El mas simple de ellos se llama metano (CH4) y posee una estructura tetraédrica derivada de la hibridación sp3 que presenta el carbono
Longitudes de enlace y ángulos de enlace
La longitud de enlace es de 1,09×10−10 m para un enlace C – H y 1,54×10−10 m para un enlace C – C.
Una cadena de dos carbonos se conoce como etano (C2H6) y cada uno de los átomos tiene, como es característicos de los alcanos , sus cuatro enlaces ocupados
De allí le continua el propano (C3H8), Butano (C4H10), y a partir de 5 carbonos los nombres se derivan de numerales griegos: pentano, hexano, heptano etc.
En general, la fórmula para todos los alcanos es CnH2n+2 y forma un serie homologa y si la cadena es lineal se acostumbra a colocar una letra n antes del nombre
Son enlaces simples de átomos de carbono que forman un anillo molecular, se denominan a si a los alcanos de cadena cerrada
Para simplificar los cicloalcanos se nombran de forma similar a los alcanos lineales, pero anteponiendo el prefijo ciclo
Los ciclohexano forma parte de la gasolina y se considera el mas importante de los cicloalcanos, y al igual que estos es toxico y produce irritación en los ojos y dolor de cabeza
RADICALES ALQUILO
Existe muchos alcanos que no poseen una cadena lineal, sino que tiene ramificaciones o sustituyentes. Si tales ramificaciones se derivan de los alcanos estas cadenas se llaman grupos o radicales alquilo y el
nombre se le asigna añadiéndole ilo en
vez de -ano
-Alquenos
Los alquenos son hidrocarburos que tienen doble enlace carbon-carbono en su molécula, y por eso son denominados insaturados. Se emplea frecuentemente la palabra olefina como sinónimo.
La fórmula general es CnH2n.
Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos.
Nomenclatura de Alquinos - Reglas IUPAC
Regla 1.
Los alquinos responden a la fórmula CnH2n-2 y se nombran sustituyendo el sufijo -ano del alca-no con igual número de carbonos por -ino.
Regla 2.
Se toma como cadena principal la más larga que contenga el doble enlace. En caso de tener varios dobles enlaces se toma como cadena principal la que contiene el mayor número de dobles enlaces (aunque no sea la más larga)
Regla 3.
La numeración comienza por el extremo de la cadena que otorga al doble enlace el localizador más bajo posible. Los dobles enlaces tienen preferencia sobre los sustituyentes
Regla 4.
Los alquenos pueden existir en forma de isómeros espaciales que se distinguen con la notación cis/trans.
-Alquinos
Los alquinos son hidrocarburos que contienen enlaces triples carbono-carbono. Se conocen como acetilenos
La fórmula molecular general es CnH2n-2 .
nombran a los alquinos utilizando el mismo prefijo que para los alcanos (met-, et-, prop-, but-....) pero cambiando el sufijo -ano por -ino.
-Hidrocarburos Aromaticos
son procesos en los que los alcanos de cadena lineal son calentados en presencia de un catalizador de platino
En la isomerización, los alcanos se convierten en sus isómeros de cadena ramificada
En el reformado, los alcanos se convierten en sus formas cíclicas o en hidrocarburos aromáticos, liberando hidrógeno como subproducto.
Las propiedades de los hidrocarburos aromáticos son aprovechados por la industria cosmética
Ejemplo el Naftaleno: naftaleno, C10H8) es un sólido blanco que se volatiliza fácilmente y se produce naturalmente cuando se queman combustibles.
bicyclo[4.4.0]deca-1,3,5,7,9-penteno
-Benceno
El benceno es un hidrocarburo poliinsaturado de fórmula molecular C6H6, con forma de anillo (se le llama anillo bencénico, o aromático, ya que posee un olor característico) y puede considerarse una forma poliinsaturada del ciclohexano.
Los dos sustituyentes ocupan posiciones próximas o contiguas entre sí, que se numeran como carbonos 1 y 2. En la figura, esas posiciones se han señalado con los símbolos R y orto.
Los dos sustituyentes ocupan las posiciones 1 y 3. En la figura, esas posiciones se han señalado con los símbolos R y meta.
Los dos sustituyentes ocupan las posiciones opuestas 1 y 4. En la figura, esas posiciones se han señalado con los símbolos R y para.
-Derivados Halogenados
Son hidrocarburos que contienen en su molécula átomos de halógeno. Se nombran a veces como haluros de alkilo
Los derivados halogenados o compuestos halogenados, como su nombre lo dice son compuestos que contienen halogenos. Algunos de los compuestos halogenados son los hidrocarburos halogenados, o sea, los hidrocarburos con halogenos (clorometano, difluoropentano).
Los compuestos halogenados pertenecen al grupo funcional de los átomos de halógeno
Se nombran anteponiendo el nombre del halógeno (fluoro, cloro, bromo, yodo) al del hidrocarburo correspondiente con el número que indica su posición. Si se encuentra un sustituyente en la cadena lateral, se numera entonces ésta principiando por el átomo de carbono unido a la cadena principal; la cadena lateral se encierra en un paréntesis La posición de los átomos de halógeno se indica por medio de localizadores.
-Bromuro de Metilo
El compuesto químico bromuro de metilo o bromometano, es un compuesto orgánico halogenado con la fórmula química CH3Br. Es un gas incoloro, con suave aroma a cloroformo, ininflamable. Sus propiedades químicas son bastante similares a las del clorometano. Nombres comerciales del bromometano son Embafume, Bromometano, y Terabol.
-Tetracloruro de Carbono
(TTCC) se usa como: a) Disolvente en la extracción de aceites, grasas y ceras. b) Industria del caucho y cuero. c) Industria química, de pinturas y artes gráficas. d) Limpieza en seco e ind. farmacéutica (antihelmíntico, desengrasante capilar)
Este polímero, también llamado PTFE por la abreviación de politetrafluoretileno, tiene la característica de repetir una de sus unidades, la F2C-CF2.
-Alcoholes y Fenoles
Los alcoholes son aquellos compuestos orgánicos en cuya estructura se encuentra el grupo hidroxilo (-OH), unido a un carbono que solo se acopla a otro carbono o a hidrógenos.
Pueden ser alifáticos (R-OH) o aromáticos (Ar-OH) estos últimos se conocen como fenoles.
Los alcoholes son compuestos de fórmula general ROH, donde R es cualquier grupo alquilo, incluso sustituido. El grupo puede ser primario, secundario o terciario; puede ser de cadena abierta o cíclica; puede contener un doble enlace, un átomo de halógeno, un anillo aromático o grupos hidroxilo adicionales.
-Fenol
El fenol en forma pura es un sólido cristalino de color blanco-incoloro a temperatura ambiente. Su fórmula química es C6H5OH, y tiene un punto de fusión de 43 ºC y un punto de ebullición de 182 ºC. El fenol no es un alcohol, debido a que el grupo funcional de los alcoholes es R-OH,y en el caso del fenol es Ph-OH. El fenol es conocido también como ácido fénico o ácido carbólico, cuya Ka es de 1,3 · 10-10. Puede sintetizarse mediante la oxidación parcial del benceno.
Industrialmente se obtiene mediante oxidación de cumeno (isopropil benceno) a hidroperóxido de cumeno, que posteriormente, en presencia de un ácido, se excinde en fenol y acetona, que se separan por destilación.
-Derivados Importantes de los Alcoholes y Fenoles
El compuesto químico metanol, también conocido como alcohol metílico o alcohol de madera, es el alcohol más sencillo. A temperatura ambiente se presenta como un líquido ligero (de baja densidad), incoloro, inflamable y tóxico que se emplea como anticongelante, disolvente y combustible. Su fórmula química es CH3OH.
conocido como alcohol etílico, es un alcohol que se presenta como un líquido incoloro e inflamable con un punto de ebullición de 78 °C.
Mezclable con agua en cualquier proporción; a la concentración de 95% en peso se forma una mezcla azeotrópica.
Su fórmula química es CH3-CH2-OH, principal producto de las bebidas alcohólicas como el vino (alrededor de un 13%), la cerveza (5%) o licores (hasta un 50%).
compuesto químico que pertenece al grupo de los glicoles. El etilenglicol es un líquido transparente, incoloro, ligeramente espeso. A temperatura ambiente es poco volátil, pero puede existir en el aire en forma de vapor, el etilenglicol es inodoro pero tiene un sabor dulce. Se fabrica a partir de la hidratación del óxido de etileno (epóxido cancerígeno).
Se utiliza como anticongelante en los circuitos de refrigeración de motores de combustión interna, como difusor del calor, para fabricar compuestos de poliéster, y como disolventes en la industria de la pintura y el plástico. El etilenglicol es también un ingrediente en líquidos para revelar fotografías, fluidos para frenos hidráulicos y en tinturas usadas en almohadillas para estampar, bolígrafos, y talleres de imprenta.
El propanotriol, glicerol o glicerina (C3H8O3) es un alcohol con tres grupos hidroxilos (–OH), por lo que podemos representar la molécula como.
-Eteres
Los éteres son compuestos orgánicos que tienen como fórmula general CnH2n+2O y su estructura se expresa por R-O-R´.
Estos compuestos orgánicos se consideran como producto de la sustitución del hidrógeno del grupo hidroxilo de los alcoholes , por un radical alquilo o arilo. Se tiene cuatro sistemas para nombrar a los éteres:
Con los nombres de los radicales ligados al oxígeno, unidos con la palabra oxi, nombrando primero al radical más simple.
Se nombran los grupos alquilo unidos al oxígeno, seguido por la palabra éter o como éter de los radicales alquílicos unidos al oxígeno.
Si un miembro no tiene nombre simple puede nombrarse el compuesto como un derivado alcoxi.
Considerándolos como óxidos de los radicales unidos al oxígeno, cuando estos son iguales.
-Aldehidos y Cetonas
Los aldehídos son sustancias de formula general RCHO; las cetonas son compuestos de formula general RR’CO. Los grupos R y R’ pueden ser alifáticos o aromáticos (en el aldehído HCHO, R es H).
Los aldehídos y las cetonas contienen el grupo carbonilo: C=O y a menudo
se les llama compuestos carboxílicos. El grupo carbonilo es el que determina
en gran medida la química de los aldehídos y cetonas.
Los aldehídos y cetonas tienen muchas semejanzas en sus propiedades. Sin
embargo, el carbonilo de los aldehídos posee además un hidrogeno, mientras
que Las cetonas poseen dos radicales orgánicos.
Esta diferencia estructural afecta a sus propiedades de dos formas:
los aldehídos se oxidan con facilidad; las cetonas lo hacen con dificultad;
los aldehídos suelen ser mas reactivos que las cetonas en adiciones
nucleofilicas, estas ultimas características de los compuestos carboxílicos.
se toma la cadena más larga que contiene el C del grupo –CHO y se sustituye la terminación –o del alcano por el
sufijo -al. El C del CHO es el número uno. Para los compuestos con dos grupos –CH=O, al nombre del alcano se le añade el sufijo –dial. Cuando otros grupos funcionales tienen prioridad en la nomenclatura, el grupo –CHO se denomina formilo.
Los nombres comunes sustituyen el sufijo –ico (oico u oxílico) y la palabra ácido de los ácidos carboxílicos correspondientes por -aldehído. La posición de los sustituyentes en las cadenas se designa con letras griegas:
-Cetonas
Para nombrar las cetonas existen dos tipos de nomenclaturas:
• Nomenclatura sustitutiva: Se nombran a partir del hidrocarburo del que derivan, añadiendo la terminación ona e indicando la posición del grupo carbonilo, "CO", mediante localizadores.
En química orgánica, un ácido carboxílico es un grupo funcional con la forma:
Esta integrado por el grupo carbonilo (C=O) , el cual también esta unido a un grupo hidroxilo y ala parte hidrocarbonada de la molécula, se representa como COOH y se denomina grupo carboxilo.
El grupo carboxilo se liga a radicales arilo o alquilo formando gran variedad de ácidos.
Las moléculas que contienen este grupo funcional se llaman ácidos carboxílicos o ácidos orgánicos
La IUPAC nombra los ácidos carboxílicos reemplazando la terminación -ano del alcano con igual número de carbonos por -oico.
-Esteres Carboxilicos
Un ácido carboxílico se convierte directamente a un éster al calentarlo con un alcohol en presencia de un poco de ácido mineral, por lo general ácido sulfúrico concentrado o cloruro de hidrógeno seco. Esta reacción es reversible y alcanza el equilibrio cuando aún quedan cantidades apreciables de reactivos.
Esteres Carboxilicos
Los compuestos derivados de los ácidos carboxílicos son compuestos en los que el -OH de un grupo carboxilico ha sido reemplazado.
El OH de un ácido puede ser reemplazado por los grupos CI, OR’ o NH2 para generar cloruros de ácido, ésteres amidas.
-Anhidridos Carboxilicos
Los anhídridos de ácido (o anhídridos carboxílicos) son compuestos químicos orgánicos que tienen la formula general (RCO)2O, y formalmente son el producto de deshidratación de dos moléculas de ácido carboxílico (o una si tiene lugar de forma intramolecular en un ácido dicarboxílico). Al reaccionar con agua (hidrólisis) vuelven a formar los ácidos carboxílicos de partida.
Los anhidridos de ácido simétricos y mixtos son respectivamente aquellos donde los grupos acilo (RCO-) son iguales o diferentes
-Haluro de Acidos Carboxilicos
Un haluro de ácido (o haluro de acilo) es un compuesto derivado de un ácido al sustituir el grupo hidroxilo por un halógeno.
Si el ácido es un ácido carboxílico, el compuesto contiene un grupo funcional -COX. En ellos el carbono está unido a un radical o átomo de hidrógeno (R), a un oxígeno mediante un doble enlace y mediante un enlace simple (sigma) a un halógeno (X).
-Amidas
Una amida es un compuesto orgánico cuyo grupo funcional es del tipo RCONR'R'', siendo CO un carbonilo, N un átomo de nitrógeno, y R, R' y R'' radicales orgánicos o átomos de hidrógeno:
Se puede considerar como un derivado de un ácido carboxílico por sustitución del grupo —OH del ácido por un grupo —NH2, —NHR o —NRR‘ Formalmente también se pueden considerar derivados del amoníaco, de una amina primaria o de una amina secundaria por sustitución de un hidrógeno por un radical ácido, dando lugar a una amida primaria, secundaria o terciaria, respectivamente.
-Aminas
Las aminas son compuestos químicos orgánicos que se consideran como derivados del amoníaco y resultan de la sustitución de los hidrógenos de la molécula por los radicales alquilo. Según se sustituyan uno, dos o tres hidrógenos, las aminas serán primarias, secundarias o terciarias, respectivamente.
Las aminas primarias y secundarias tienen puntos de ebullición menores que los de los alcoholes, pero mayores que los de los éteres de peso molecular semejante. Las aminas terciarias, sin puentes de hidrógeno, tienen puntos de ebullición más bajos que las aminas primarias y secundarias de pesos moleculares semejantes.
-Bibliografia
http://www.telecable.es/personales/albatros1/quimica/grupofun/aldeceto/aldeceto.htm
http://es.wikipedia.org/wiki/%C3%89ter_%28qu%C3%ADmica%29
http://es.wikipedia.org/wiki/Alcohol#Qu.C3.ADmica
http://es.wikipedia.org/wiki/%C3%89ster
http://es.wikipedia.org/wiki/%C3%81cido_carbox%C3%ADlico
http://es.wikipedia.org/wiki/Amida
http://es.wikipedia.org/wiki/Metanol
http://www.facmed.unam.mx/deptos/salud/censenanza/spivst/spiv/104-07.pdf
http://es.wikipedia.org/wiki/Naftalina
http://es.wikipedia.org/wiki/Benceno
http://132.248.103.112/nomencla/nomen7.htm
http://www.monografias.com/trabajos60/derivados-halogenados/derivados-halogenados.shtml
http://es.wikipedia.org/wiki/Bromuro_de_metilo
http://www.gfc.edu.co/estudiantes/anuario/2003/sistemas/catalina/segundo_p/grupos_funcionales/node6.html
http://www.elergonomista.com/tetracloruro.htm
http://www.misrespuestas.com/que-es-el-teflon.html
http://es.wikipedia.org/wiki/Fenol
http://es.wikipedia.org/wiki/Metanol
http://es.wikipedia.org/wiki/Etilenglicol
http://es.wikipedia.org/wiki/Anh%C3%ADdrido_de_%C3%A1cido
http://es.wikipedia.org/wiki/Haluro_de_%C3%A1cido
http://es.wikipedia.org/wiki/Amina
Debido al gran número de compuestos, la química orgánica ha desarrollado su propio sistema de nomenclatura que relaciona las fórmulas de los compuestos y sus nombres. Aún así se sigue utilizando el sistema IUPAC.
Los nombres de los compuestos deben ser sistemáticos, deben asignarse mediante un sistema de normas, de tal manera que a partir del nombre pueda deducirse su estructura, y a partir de la estructura poder dar el nombre.
Se utilizan prefijos para indicar el número de carbonos del compuesto. A continuación verá los principales:
Met-1
Et-2
Prp-3
But-4
Pent-5
El uso de los prefijos facilita la nomenclatura de los compuesto, asi podemos poner varios prefijos en cadena hasta nombrar a todos los grupos funcionales presentes. En el caso de los sufijos solo se puede usar uno, para evitar confusiones.
El problema está en decidir cual de los grupos se le nombrará como sufijo. Para esto existe una regla en la cual los grupos funcionales se acomodan por orden de oxidación y el que tenga mayor orden será el que se usa como sufijo.
El grupo funcional que se encuentre más abajo de la tabla será el de mayor orden de prioridad y se usará como sufijo Si mas de un grupo funcional se encuentra presente el que tenga mayor prioridad se usará como sufijo y los otros como prefijos
Son aquellos donde el carbono esta unido a 3 hidrógenos y algún radical
Ejemplo:
CH3-OH - Metanol
Son aquellos donde el carbono esta unido a dos hidrógenos y dos radicales
Ejemplo:
OH-CH2-OH - Metadiol
Son aquellos donde el carbono esta unido a un hidrogeno y 3 radicales
Alcanos
Son hidrocarburos saturados o moléculas orgánicas formados únicamente por átomos de carbono e hidrogeno, sin grupos funcionales como el carbonilo (-CO), carboxilo (-COOH), Amida (-CON=) etc.
El mas simple de ellos se llama metano (CH4) y posee una estructura tetraédrica derivada de la hibridación sp3 que presenta el carbono
Longitudes de enlace y ángulos de enlace
La longitud de enlace es de 1,09×10−10 m para un enlace C – H y 1,54×10−10 m para un enlace C – C.
Una cadena de dos carbonos se conoce como etano (C2H6) y cada uno de los átomos tiene, como es característicos de los alcanos , sus cuatro enlaces ocupados
De allí le continua el propano (C3H8), Butano (C4H10), y a partir de 5 carbonos los nombres se derivan de numerales griegos: pentano, hexano, heptano etc.
En general, la fórmula para todos los alcanos es CnH2n+2 y forma un serie homologa y si la cadena es lineal se acostumbra a colocar una letra n antes del nombre
Son enlaces simples de átomos de carbono que forman un anillo molecular, se denominan a si a los alcanos de cadena cerrada
Para simplificar los cicloalcanos se nombran de forma similar a los alcanos lineales, pero anteponiendo el prefijo ciclo
Los ciclohexano forma parte de la gasolina y se considera el mas importante de los cicloalcanos, y al igual que estos es toxico y produce irritación en los ojos y dolor de cabeza
RADICALES ALQUILO
Existe muchos alcanos que no poseen una cadena lineal, sino que tiene ramificaciones o sustituyentes. Si tales ramificaciones se derivan de los alcanos estas cadenas se llaman grupos o radicales alquilo y el
nombre se le asigna añadiéndole ilo en
vez de -ano
-Alquenos
Los alquenos son hidrocarburos que tienen doble enlace carbon-carbono en su molécula, y por eso son denominados insaturados. Se emplea frecuentemente la palabra olefina como sinónimo.
La fórmula general es CnH2n.
Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos.
Nomenclatura de Alquinos - Reglas IUPAC
Regla 1.
Los alquinos responden a la fórmula CnH2n-2 y se nombran sustituyendo el sufijo -ano del alca-no con igual número de carbonos por -ino.
Regla 2.
Se toma como cadena principal la más larga que contenga el doble enlace. En caso de tener varios dobles enlaces se toma como cadena principal la que contiene el mayor número de dobles enlaces (aunque no sea la más larga)
Regla 3.
La numeración comienza por el extremo de la cadena que otorga al doble enlace el localizador más bajo posible. Los dobles enlaces tienen preferencia sobre los sustituyentes
Regla 4.
Los alquenos pueden existir en forma de isómeros espaciales que se distinguen con la notación cis/trans.
-Alquinos
Los alquinos son hidrocarburos que contienen enlaces triples carbono-carbono. Se conocen como acetilenos
La fórmula molecular general es CnH2n-2 .
nombran a los alquinos utilizando el mismo prefijo que para los alcanos (met-, et-, prop-, but-....) pero cambiando el sufijo -ano por -ino.
-Hidrocarburos Aromaticos
son procesos en los que los alcanos de cadena lineal son calentados en presencia de un catalizador de platino
En la isomerización, los alcanos se convierten en sus isómeros de cadena ramificada
En el reformado, los alcanos se convierten en sus formas cíclicas o en hidrocarburos aromáticos, liberando hidrógeno como subproducto.
Las propiedades de los hidrocarburos aromáticos son aprovechados por la industria cosmética
Ejemplo el Naftaleno: naftaleno, C10H8) es un sólido blanco que se volatiliza fácilmente y se produce naturalmente cuando se queman combustibles.
bicyclo[4.4.0]deca-1,3,5,7,9-penteno
-Benceno
El benceno es un hidrocarburo poliinsaturado de fórmula molecular C6H6, con forma de anillo (se le llama anillo bencénico, o aromático, ya que posee un olor característico) y puede considerarse una forma poliinsaturada del ciclohexano.
Los dos sustituyentes ocupan posiciones próximas o contiguas entre sí, que se numeran como carbonos 1 y 2. En la figura, esas posiciones se han señalado con los símbolos R y orto.
Los dos sustituyentes ocupan las posiciones 1 y 3. En la figura, esas posiciones se han señalado con los símbolos R y meta.
Los dos sustituyentes ocupan las posiciones opuestas 1 y 4. En la figura, esas posiciones se han señalado con los símbolos R y para.
-Derivados Halogenados
Son hidrocarburos que contienen en su molécula átomos de halógeno. Se nombran a veces como haluros de alkilo
Los derivados halogenados o compuestos halogenados, como su nombre lo dice son compuestos que contienen halogenos. Algunos de los compuestos halogenados son los hidrocarburos halogenados, o sea, los hidrocarburos con halogenos (clorometano, difluoropentano).
Los compuestos halogenados pertenecen al grupo funcional de los átomos de halógeno
Se nombran anteponiendo el nombre del halógeno (fluoro, cloro, bromo, yodo) al del hidrocarburo correspondiente con el número que indica su posición. Si se encuentra un sustituyente en la cadena lateral, se numera entonces ésta principiando por el átomo de carbono unido a la cadena principal; la cadena lateral se encierra en un paréntesis La posición de los átomos de halógeno se indica por medio de localizadores.
-Bromuro de Metilo
El compuesto químico bromuro de metilo o bromometano, es un compuesto orgánico halogenado con la fórmula química CH3Br. Es un gas incoloro, con suave aroma a cloroformo, ininflamable. Sus propiedades químicas son bastante similares a las del clorometano. Nombres comerciales del bromometano son Embafume, Bromometano, y Terabol.
-Tetracloruro de Carbono
(TTCC) se usa como: a) Disolvente en la extracción de aceites, grasas y ceras. b) Industria del caucho y cuero. c) Industria química, de pinturas y artes gráficas. d) Limpieza en seco e ind. farmacéutica (antihelmíntico, desengrasante capilar)
Este polímero, también llamado PTFE por la abreviación de politetrafluoretileno, tiene la característica de repetir una de sus unidades, la F2C-CF2.
-Alcoholes y Fenoles
Los alcoholes son aquellos compuestos orgánicos en cuya estructura se encuentra el grupo hidroxilo (-OH), unido a un carbono que solo se acopla a otro carbono o a hidrógenos.
Pueden ser alifáticos (R-OH) o aromáticos (Ar-OH) estos últimos se conocen como fenoles.
Los alcoholes son compuestos de fórmula general ROH, donde R es cualquier grupo alquilo, incluso sustituido. El grupo puede ser primario, secundario o terciario; puede ser de cadena abierta o cíclica; puede contener un doble enlace, un átomo de halógeno, un anillo aromático o grupos hidroxilo adicionales.
-Fenol
El fenol en forma pura es un sólido cristalino de color blanco-incoloro a temperatura ambiente. Su fórmula química es C6H5OH, y tiene un punto de fusión de 43 ºC y un punto de ebullición de 182 ºC. El fenol no es un alcohol, debido a que el grupo funcional de los alcoholes es R-OH,y en el caso del fenol es Ph-OH. El fenol es conocido también como ácido fénico o ácido carbólico, cuya Ka es de 1,3 · 10-10. Puede sintetizarse mediante la oxidación parcial del benceno.
Industrialmente se obtiene mediante oxidación de cumeno (isopropil benceno) a hidroperóxido de cumeno, que posteriormente, en presencia de un ácido, se excinde en fenol y acetona, que se separan por destilación.
-Derivados Importantes de los Alcoholes y Fenoles
El compuesto químico metanol, también conocido como alcohol metílico o alcohol de madera, es el alcohol más sencillo. A temperatura ambiente se presenta como un líquido ligero (de baja densidad), incoloro, inflamable y tóxico que se emplea como anticongelante, disolvente y combustible. Su fórmula química es CH3OH.
conocido como alcohol etílico, es un alcohol que se presenta como un líquido incoloro e inflamable con un punto de ebullición de 78 °C.
Mezclable con agua en cualquier proporción; a la concentración de 95% en peso se forma una mezcla azeotrópica.
Su fórmula química es CH3-CH2-OH, principal producto de las bebidas alcohólicas como el vino (alrededor de un 13%), la cerveza (5%) o licores (hasta un 50%).
compuesto químico que pertenece al grupo de los glicoles. El etilenglicol es un líquido transparente, incoloro, ligeramente espeso. A temperatura ambiente es poco volátil, pero puede existir en el aire en forma de vapor, el etilenglicol es inodoro pero tiene un sabor dulce. Se fabrica a partir de la hidratación del óxido de etileno (epóxido cancerígeno).
Se utiliza como anticongelante en los circuitos de refrigeración de motores de combustión interna, como difusor del calor, para fabricar compuestos de poliéster, y como disolventes en la industria de la pintura y el plástico. El etilenglicol es también un ingrediente en líquidos para revelar fotografías, fluidos para frenos hidráulicos y en tinturas usadas en almohadillas para estampar, bolígrafos, y talleres de imprenta.
El propanotriol, glicerol o glicerina (C3H8O3) es un alcohol con tres grupos hidroxilos (–OH), por lo que podemos representar la molécula como.
-Eteres
Los éteres son compuestos orgánicos que tienen como fórmula general CnH2n+2O y su estructura se expresa por R-O-R´.
Estos compuestos orgánicos se consideran como producto de la sustitución del hidrógeno del grupo hidroxilo de los alcoholes , por un radical alquilo o arilo. Se tiene cuatro sistemas para nombrar a los éteres:
Con los nombres de los radicales ligados al oxígeno, unidos con la palabra oxi, nombrando primero al radical más simple.
Se nombran los grupos alquilo unidos al oxígeno, seguido por la palabra éter o como éter de los radicales alquílicos unidos al oxígeno.
Si un miembro no tiene nombre simple puede nombrarse el compuesto como un derivado alcoxi.
Considerándolos como óxidos de los radicales unidos al oxígeno, cuando estos son iguales.
-Aldehidos y Cetonas
Los aldehídos son sustancias de formula general RCHO; las cetonas son compuestos de formula general RR’CO. Los grupos R y R’ pueden ser alifáticos o aromáticos (en el aldehído HCHO, R es H).
Los aldehídos y las cetonas contienen el grupo carbonilo: C=O y a menudo
se les llama compuestos carboxílicos. El grupo carbonilo es el que determina
en gran medida la química de los aldehídos y cetonas.
Los aldehídos y cetonas tienen muchas semejanzas en sus propiedades. Sin
embargo, el carbonilo de los aldehídos posee además un hidrogeno, mientras
que Las cetonas poseen dos radicales orgánicos.
Esta diferencia estructural afecta a sus propiedades de dos formas:
los aldehídos se oxidan con facilidad; las cetonas lo hacen con dificultad;
los aldehídos suelen ser mas reactivos que las cetonas en adiciones
nucleofilicas, estas ultimas características de los compuestos carboxílicos.
se toma la cadena más larga que contiene el C del grupo –CHO y se sustituye la terminación –o del alcano por el
sufijo -al. El C del CHO es el número uno. Para los compuestos con dos grupos –CH=O, al nombre del alcano se le añade el sufijo –dial. Cuando otros grupos funcionales tienen prioridad en la nomenclatura, el grupo –CHO se denomina formilo.
Los nombres comunes sustituyen el sufijo –ico (oico u oxílico) y la palabra ácido de los ácidos carboxílicos correspondientes por -aldehído. La posición de los sustituyentes en las cadenas se designa con letras griegas:
-Cetonas
Para nombrar las cetonas existen dos tipos de nomenclaturas:
• Nomenclatura sustitutiva: Se nombran a partir del hidrocarburo del que derivan, añadiendo la terminación ona e indicando la posición del grupo carbonilo, "CO", mediante localizadores.
En química orgánica, un ácido carboxílico es un grupo funcional con la forma:
Esta integrado por el grupo carbonilo (C=O) , el cual también esta unido a un grupo hidroxilo y ala parte hidrocarbonada de la molécula, se representa como COOH y se denomina grupo carboxilo.
El grupo carboxilo se liga a radicales arilo o alquilo formando gran variedad de ácidos.
Las moléculas que contienen este grupo funcional se llaman ácidos carboxílicos o ácidos orgánicos
La IUPAC nombra los ácidos carboxílicos reemplazando la terminación -ano del alcano con igual número de carbonos por -oico.
-Esteres Carboxilicos
Un ácido carboxílico se convierte directamente a un éster al calentarlo con un alcohol en presencia de un poco de ácido mineral, por lo general ácido sulfúrico concentrado o cloruro de hidrógeno seco. Esta reacción es reversible y alcanza el equilibrio cuando aún quedan cantidades apreciables de reactivos.
Esteres Carboxilicos
Los compuestos derivados de los ácidos carboxílicos son compuestos en los que el -OH de un grupo carboxilico ha sido reemplazado.
El OH de un ácido puede ser reemplazado por los grupos CI, OR’ o NH2 para generar cloruros de ácido, ésteres amidas.
-Anhidridos Carboxilicos
Los anhídridos de ácido (o anhídridos carboxílicos) son compuestos químicos orgánicos que tienen la formula general (RCO)2O, y formalmente son el producto de deshidratación de dos moléculas de ácido carboxílico (o una si tiene lugar de forma intramolecular en un ácido dicarboxílico). Al reaccionar con agua (hidrólisis) vuelven a formar los ácidos carboxílicos de partida.
Los anhidridos de ácido simétricos y mixtos son respectivamente aquellos donde los grupos acilo (RCO-) son iguales o diferentes
-Haluro de Acidos Carboxilicos
Un haluro de ácido (o haluro de acilo) es un compuesto derivado de un ácido al sustituir el grupo hidroxilo por un halógeno.
Si el ácido es un ácido carboxílico, el compuesto contiene un grupo funcional -COX. En ellos el carbono está unido a un radical o átomo de hidrógeno (R), a un oxígeno mediante un doble enlace y mediante un enlace simple (sigma) a un halógeno (X).
-Amidas
Una amida es un compuesto orgánico cuyo grupo funcional es del tipo RCONR'R'', siendo CO un carbonilo, N un átomo de nitrógeno, y R, R' y R'' radicales orgánicos o átomos de hidrógeno:
Se puede considerar como un derivado de un ácido carboxílico por sustitución del grupo —OH del ácido por un grupo —NH2, —NHR o —NRR‘ Formalmente también se pueden considerar derivados del amoníaco, de una amina primaria o de una amina secundaria por sustitución de un hidrógeno por un radical ácido, dando lugar a una amida primaria, secundaria o terciaria, respectivamente.
-Aminas
Las aminas son compuestos químicos orgánicos que se consideran como derivados del amoníaco y resultan de la sustitución de los hidrógenos de la molécula por los radicales alquilo. Según se sustituyan uno, dos o tres hidrógenos, las aminas serán primarias, secundarias o terciarias, respectivamente.
Las aminas primarias y secundarias tienen puntos de ebullición menores que los de los alcoholes, pero mayores que los de los éteres de peso molecular semejante. Las aminas terciarias, sin puentes de hidrógeno, tienen puntos de ebullición más bajos que las aminas primarias y secundarias de pesos moleculares semejantes.
-Bibliografia
http://www.telecable.es/personales/albatros1/quimica/grupofun/aldeceto/aldeceto.htm
http://es.wikipedia.org/wiki/%C3%89ter_%28qu%C3%ADmica%29
http://es.wikipedia.org/wiki/Alcohol#Qu.C3.ADmica
http://es.wikipedia.org/wiki/%C3%89ster
http://es.wikipedia.org/wiki/%C3%81cido_carbox%C3%ADlico
http://es.wikipedia.org/wiki/Amida
http://es.wikipedia.org/wiki/Metanol
http://www.facmed.unam.mx/deptos/salud/censenanza/spivst/spiv/104-07.pdf
http://es.wikipedia.org/wiki/Naftalina
http://es.wikipedia.org/wiki/Benceno
http://132.248.103.112/nomencla/nomen7.htm
http://www.monografias.com/trabajos60/derivados-halogenados/derivados-halogenados.shtml
http://es.wikipedia.org/wiki/Bromuro_de_metilo
http://www.gfc.edu.co/estudiantes/anuario/2003/sistemas/catalina/segundo_p/grupos_funcionales/node6.html
http://www.elergonomista.com/tetracloruro.htm
http://www.misrespuestas.com/que-es-el-teflon.html
http://es.wikipedia.org/wiki/Fenol
http://es.wikipedia.org/wiki/Metanol
http://es.wikipedia.org/wiki/Etilenglicol
http://es.wikipedia.org/wiki/Anh%C3%ADdrido_de_%C3%A1cido
http://es.wikipedia.org/wiki/Haluro_de_%C3%A1cido
http://es.wikipedia.org/wiki/Amina
Unidad I- Definiciones Basicas de Quimica Organica
Estructura de las moléculas Orgánicas
-Orbitales Atómicos
Son isocapas de varios orbitales atómicos y algunos orbitales son visibles
Ejemplos en la pag de http://www.chm.davidson.edu/vce/atomicorbitals/ao.html
http://www.chm.davidson.edu/vce/atomicorbitals/AtomicOrbitals.html
-Orbitales Híbridos
El origen y significancia de los orbitales híbridos esta explicado y ilustrado con la densidad del electrón y la energía en diagramas
ejemplos en:
http://www.chm.davidson.edu/vce/atomicorbitals/hybrid.html
http://www.chm.davidson.edu/vce/atomicorbitals/AtomicOrbitals.html
-Geometría de los Enlaces Sencillos, dobles y Triples
La forma geométrica u organización tridimensional de los átomos de las moléculas tiene efecto sobre las propiedades físicas (densidad, punto de ebullición, punto de fusión, etc.) y propiedades químicas (tipo de reacciones, velocidad de reacción) de los compuestos.
Los electrones de valencia enlazados y no enlazados de cada átomo se repelen entre si, produciendo que los átomos a los cuales están enlazados se mantengan separados.
Las formas moleculares son tales que las repulsiones sean mínimas.
El modelo de la Repulsión de los Pares de Electrones de la Capa de Valencia (RPECV) está basado en estos hechos:
Los enlaces dobles y triples deben ser tratados como si fuesen enlaces simples.
Si una molécula tiene dos o más estructuras resonantes, el modelo RPECV se puede aplicar a cualquiera de ellas.
Cuando las moléculas tienen enlaces polares, las formas geométricas tienen cargas positivas y negativas que tornan la molécula un dipolo, siendo la polaridad medida por el momento di polar Enlaces químicos
, siendo Q la cantidad de carga de cada polo en Coulomb y r la distancia entre las cargas en metros.
Mas info:
http://www.chm.davidson.edu/vce/atomicorbitals/index.html
-Tetra valencia del Carbono
Los átomos de carbono tiene cuatro electrones en su última capa, de modo que formando cuatro enlaces covalentes con otros átomos, consigue completar su octeto.
TIPOS DE ENLACE
- 4 Enlaces sencillos C-H, - Ángulos de enlace 109º28′ - Orbitales híbridos sp3
- 1 Enlace doble C=C - Ángulos de enlace de 120º - Orbitales híbridos sp2
-1 enlace triple -Ángulo de enlace de 180º - Orbitales híbridos sp
-Isomeros Planos
-Formulas Quimicas Organicas
La fórmula química es la representación de los elementos que forman un compuesto y la proporción en que se encuentran, o del número de átomos que forman una molécula. También puede darnos información adicional como la manera en que se unen dichos átomos mediante enlaces químicos e incluso su distribución en el espacio. Para nombrarlas, se emplean las reglas de la nomenclatura o formulación química. Existen varios tipos de fórmulas químicas
Formula Estructural
La fórmula estructural es similar a las anteriores pero señalando la geometría espacial de la molécula mediante la indicación de distancias, ángulos o el empleo de perspectivas en diagramas bi- o tridimensionales.
Formula Desarrollada
La fórmula desarrollada es similar a la anterior pero indicando todos los enlaces. Aunque se representa sobre un plano, permite observar ciertos detalles de la estructura que resultan de gran interés. Se llaman también estructuras de Kekulé.
Formula Semidesarrollada
La fórmula semidesarrollada es similar a la anterior pero indicando los enlaces entre los diferentes grupos de átomos para resaltar, sobre todo, los grupos funcionales que aparecen en la molécula. Es muy usada en química orgánica, donde se puede visualizar fácilmente la estructura de la cadena carbonada y los diferentes sustituyentes. Así, la glucosa tendría la siguiente fórmula semidesarrollada:
CH2OH − CHOH − CHOH − CHOH − CHOH − CHO
http://es.wikipedia.org/wiki/F%C3%B3rmula_qu%C3%ADmica
-Cadena de Posision, Cadena y Tautomeria
Isomería de posición
La presentan aquellos compuestos que poseen el mismo esqueleto carbonado pero en los que el grupo funcional o el sustituyente ocupa diferente posición.
El C4H10O puede corresponder a dos sustancias isómeras que se diferencian en la posición del grupo OH.
Isomería de función
Varía el grupo funcional, conservando el esqueleto carbonado.
Esta isomería la presentan ciertos grupos de compuestos relacionados como: los alcoholes y éteres, los acidos y ésteres, y también los aldehídos y cetonas.
-Isomeros Espacioales
Tautomería
Es un tipo especial de isomería en la que existe transposición de un átomo entre las dos estructuras, generalmente hidrógeno,existiendo además un fácil equilibrio entre ambas formas tautómeras[2] Un ejemplo de la misma es la tautomería ceto-enólica en la que existe equilibrio entre un compuesto con grupo OH unido a uno de los átomos de carbono de un doble enlace C=C, y un compuesto con el grupo carbonilo intermedio, C=O típico de las cetonas, con transposición de un átomo de hidrógeno.
Isomeria Optica
Enantiomeros
En química se dice que dos estereoisómeros son enantiómeros si la imagen especular de uno no puede ser superpuesta con la del otro. Dicho de otra forma: un enantiómero es una imagen especular no superponible de sí mismo. Tienen las mismas propiedades físicas y químicas, excepto por la interacción con el plano de la luz polarizada o con otras moléculas quirales. Son moléculas quirales. La mezcla en cantidades equimolares de cada enantiómero en una solución se denomina mezcla racémica y es ópticamente inactiva.
Las moléculas que contienen un estereocentro (carbono asimétrico, centro esterogénico o centro quiral) son siempre ópticamente activas (quirales). Aunque esto no es cierto necesariamente para algunas moléculas con más de un esterocentro. Éste es el caso de las formas meso. Los enantiómeros tienen las mismas propiedades químicas y físicas, a excepción de su respuesta ante la luz polarizada (actividad óptica). Por ello se les denomina isómeros ópticos.
Las moléculas aquirales son ópticamente inactivas.
La rotación específica de la luz polarizada, que se mide por medio de un polarímetro, es una propiedad física característica de la estructura de cada enantiómero, de su concentración y del disolvente empleado en la medición.
http://es.wikipedia.org/wiki/Enanti%C3%B3mero
Diasteroisomeros
Los diastereoisómeros o diastereómeros son una clase de estereoisómeros tales, que no son superponibles pero tampoco imagen especular uno del otro, es decir, no son enantiómeros.
Los diastereoisómeros difieren en sus propiedades físicas y químicas.
Dentro del grupo de los diasterómeros se encuentran los isómeros cis-trans (antes conocido como Isómeros Geométricos), los confórmeros o isómeros conformacionales y, en las moléculas con varios centros quirales, los isómeros que pertenecen a distintas parejas de enantiómeros.
http://es.wikipedia.org/wiki/Diasterois%C3%B3mero
Isomeria Conformacional
En química orgánica, los isómeros conformacionales o confórmeros son estereoisómeros que se caracterizan por poder interconvertirse (modificar su orientación espacial, convirtiéndose en otro isómero de la misma molécula) a temperatura ambiente, por rotación en torno a enlaces simples anti, eclipsada o alternada. Son compuestos que, generalmente, no pueden aislarse físicamente, debido a su facilidad de interconversión. los isómeros son los compuestos que tienen la misma formula condensada o molecular, pero que tienen diferente estructura; por lo tanto son compuestos diferentes tanto en sus propiedades físicas como química, existen diferentes tipos de isomería, de cadena, de posición, geométrica o isomería cis-trans, de función y óptica. los isómeros sirven para saber la diferencia en propiedades físicas y química de un compuesto, por ejemplo: no es lo mismo la D-glucosa a la L-glucosa (isomería óptica) o el cis-butano al trans-butano.
http://es.wikipedia.org/wiki/Rotamero
Conformeros
Un confórmero es cada una de las estructuras de un mismo compuesto que se obtienen al girar, alrededor de enlaces simples, la parte de la molécula situada a un lado del enlace con respecto a la localizada al otro lado del mismo.
El análisis conformacional es la exploración de todos los confórmeros que se pueden obtener de una molécula dada al realizar torsiones alrededor de enlaces sencillos (grados de libertad conformacionales), observando los cambios en la energía molecular asociados a esas torsiones.
http://es.wikipedia.org/wiki/Conf%C3%B3rmero
-Anfoteros
Isomeror Geometricos Cis y Trans
La isomería cis-trans (o isomería geométrica) es un tipo de estereoisomería de los alquenos y cicloalcanos. Se distingue entre el isómero cis, en el que los sustituyentes están en el mismo lado del doble enlace o en la misma cara del cicloalcano, y el isómero trans, en el que están en el lado opuesto del doble enlace o en caras opuestas del cicloalcano.
http://es.wikipedia.org/wiki/Isomer%C3%ADa_cis-trans
-Fuerzas Intermoleculares
Carbono Asimetrico
Un carbono asimétrico o carbono quiral es un átomo de carbono que está enlazado con cuatro elementos diferentes. Puede presentarse en algunos compuestos orgánicos, sobre todos en aquellos que están presentes en los seres vivos, como los carbohidratos.
La presencia de uno o varios átomos de carbono asimétrico en un compuesto químico es responsable de la existencia de isomería óptica. Cada una de las dos estructuras diferentes que pueden formarse tienen los mismos átomos y los mismos enlaces pero no pueden superponerse una sobre otra, como ocurre con las dos manos de una persona. Se llaman enantiómeros y se diferencian en la dirección en la que desvían la luz polarizada por lo que se llaman formas ópticamente activas.
http://es.wikipedia.org/wiki/Carbono_quiral
Puente de Hidrogeno
Enlace de hidrógeno en el que el núcleo de hidrógeno está exactamente a mitad de camino entre dos átomos del mismo elemento. La fuerza del enlace a cada uno de estos átomos es igual. Constituye un ejemplo de un enlace de tres centros y dos electrones. Este tipo de enlace es mucho más fuerte que los enlaces de hidrógeno "normales". El orden efectivo de enlace es 0.5, así que su fuerza es comparable a un enlace covalente. Se ha visto en hielo a altas presiones, y también en la fase sólida de muchos ácidos anhidros, como el fluoruro de hidrógeno y el ácido fórmico a altas presiones.
Cada átomo de hidrógeno forma un enlace covalente parcial con dos átomos, en vez de con uno. . Se forman bajas barreras de enlace de hidrógeno cuando la distancia entre dos heteroátomos es muy pequeña.
Fuerzas de Van Der Wallas
la fuerza de van der Waals (o interacción de van der Waals), denominada así en honor al científico holandés Johannes Diderik van der Waals, es la fuerza atractiva o repulsiva entre moléculas (o entre partes de una misma molécula) distintas a aquellas debidas al enlace covalente o a la interacción electrostática de iones con otros o con moléculas neutras y son relativamente débiles comparadas con los enlaces químicos normales, pero juegan un rol fundamental en campos tan diversos como química supramolecular, biología estructural, ciencia de polímeros, nanotecnología, ciencia de superficies, y física de materia condensada. Las fuerzas de van der Waals definen el carácter químico de muchos compuestos orgánicos. También definen la solubilidad de sustancias orgánicas en medios polares y no polares. En los alcoholes inferiores, las propiedades del grupo polar hidróxilo dominan a las débiles fuerzas intermoleculares de van der Waals. En los alcoholes superiores, las propiedades del radical alquílico apolar (R) dominan y definen la solubilidad. Las fuerzas de van der Waals crecen con la longitud de la parte no polar de la sustancia.
Las fuerzas de van der Waals incluyen a atracciones entre átomos, moléculas, y superficies. Difieren del enlace covalente y del enlace iónico en que están causados por correlaciones en las polarizaciones fluctuantes de partículas cercanas (una consecuencia de la dinámica cuántica). Las fuerzas intermoleculares tienen cuatro contribuciones importantes. En general, un potencial intermolecular tiene un componente repulsivo (que evita el colapso de las moléculas debido a que al acercarse las entidades unas a otras las repulsiones dominan). También tiene un componente atractivo que, a su vez, consiste de tres contribuciones distintas:
1. La primera fuente de atracción es la interacción electrostática, también denominada interacción de Keesom o fuerza de Keesom, en honor a Willem Hendrik Keesom.
2. La segunda fuente de atracción es la inducción (también denominada polarización), que es la interacción entre un ultipolo permanente en una molécula, con un multipolo inducido en otra. Esta interacción se mide algunas veces en debyes, en honor a Peter Debye.
3. La tercera atracción suele ser denominada en honor a Fritz London que la denominaba dispersión. Es la única atracción experimentada por átomos no polares, pero opera entre cualquier par de moléculas, sin importar su simetría.
http://es.wikipedia.org/wiki/Fuerzas_de_van_der_Waals
-Orbitales Atómicos
Son isocapas de varios orbitales atómicos y algunos orbitales son visibles
Ejemplos en la pag de http://www.chm.davidson.edu/vce/atomicorbitals/ao.html
http://www.chm.davidson.edu/vce/atomicorbitals/AtomicOrbitals.html
-Orbitales Híbridos
El origen y significancia de los orbitales híbridos esta explicado y ilustrado con la densidad del electrón y la energía en diagramas
ejemplos en:
http://www.chm.davidson.edu/vce/atomicorbitals/hybrid.html
http://www.chm.davidson.edu/vce/atomicorbitals/AtomicOrbitals.html
-Geometría de los Enlaces Sencillos, dobles y Triples
La forma geométrica u organización tridimensional de los átomos de las moléculas tiene efecto sobre las propiedades físicas (densidad, punto de ebullición, punto de fusión, etc.) y propiedades químicas (tipo de reacciones, velocidad de reacción) de los compuestos.
Los electrones de valencia enlazados y no enlazados de cada átomo se repelen entre si, produciendo que los átomos a los cuales están enlazados se mantengan separados.
Las formas moleculares son tales que las repulsiones sean mínimas.
El modelo de la Repulsión de los Pares de Electrones de la Capa de Valencia (RPECV) está basado en estos hechos:
Los enlaces dobles y triples deben ser tratados como si fuesen enlaces simples.
Si una molécula tiene dos o más estructuras resonantes, el modelo RPECV se puede aplicar a cualquiera de ellas.
Cuando las moléculas tienen enlaces polares, las formas geométricas tienen cargas positivas y negativas que tornan la molécula un dipolo, siendo la polaridad medida por el momento di polar Enlaces químicos
, siendo Q la cantidad de carga de cada polo en Coulomb y r la distancia entre las cargas en metros.
Mas info:
http://www.chm.davidson.edu/vce/atomicorbitals/index.html
-Tetra valencia del Carbono
Los átomos de carbono tiene cuatro electrones en su última capa, de modo que formando cuatro enlaces covalentes con otros átomos, consigue completar su octeto.
TIPOS DE ENLACE
- 4 Enlaces sencillos C-H, - Ángulos de enlace 109º28′ - Orbitales híbridos sp3
- 1 Enlace doble C=C - Ángulos de enlace de 120º - Orbitales híbridos sp2
-1 enlace triple -Ángulo de enlace de 180º - Orbitales híbridos sp
-Isomeros Planos
-Formulas Quimicas Organicas
La fórmula química es la representación de los elementos que forman un compuesto y la proporción en que se encuentran, o del número de átomos que forman una molécula. También puede darnos información adicional como la manera en que se unen dichos átomos mediante enlaces químicos e incluso su distribución en el espacio. Para nombrarlas, se emplean las reglas de la nomenclatura o formulación química. Existen varios tipos de fórmulas químicas
Formula Estructural
La fórmula estructural es similar a las anteriores pero señalando la geometría espacial de la molécula mediante la indicación de distancias, ángulos o el empleo de perspectivas en diagramas bi- o tridimensionales.
Formula Desarrollada
La fórmula desarrollada es similar a la anterior pero indicando todos los enlaces. Aunque se representa sobre un plano, permite observar ciertos detalles de la estructura que resultan de gran interés. Se llaman también estructuras de Kekulé.
Formula Semidesarrollada
La fórmula semidesarrollada es similar a la anterior pero indicando los enlaces entre los diferentes grupos de átomos para resaltar, sobre todo, los grupos funcionales que aparecen en la molécula. Es muy usada en química orgánica, donde se puede visualizar fácilmente la estructura de la cadena carbonada y los diferentes sustituyentes. Así, la glucosa tendría la siguiente fórmula semidesarrollada:
CH2OH − CHOH − CHOH − CHOH − CHOH − CHO
http://es.wikipedia.org/wiki/F%C3%B3rmula_qu%C3%ADmica
-Cadena de Posision, Cadena y Tautomeria
Isomería de posición
La presentan aquellos compuestos que poseen el mismo esqueleto carbonado pero en los que el grupo funcional o el sustituyente ocupa diferente posición.
El C4H10O puede corresponder a dos sustancias isómeras que se diferencian en la posición del grupo OH.
Isomería de función
Varía el grupo funcional, conservando el esqueleto carbonado.
Esta isomería la presentan ciertos grupos de compuestos relacionados como: los alcoholes y éteres, los acidos y ésteres, y también los aldehídos y cetonas.
-Isomeros Espacioales
Tautomería
Es un tipo especial de isomería en la que existe transposición de un átomo entre las dos estructuras, generalmente hidrógeno,existiendo además un fácil equilibrio entre ambas formas tautómeras[2] Un ejemplo de la misma es la tautomería ceto-enólica en la que existe equilibrio entre un compuesto con grupo OH unido a uno de los átomos de carbono de un doble enlace C=C, y un compuesto con el grupo carbonilo intermedio, C=O típico de las cetonas, con transposición de un átomo de hidrógeno.
Isomeria Optica
Enantiomeros
En química se dice que dos estereoisómeros son enantiómeros si la imagen especular de uno no puede ser superpuesta con la del otro. Dicho de otra forma: un enantiómero es una imagen especular no superponible de sí mismo. Tienen las mismas propiedades físicas y químicas, excepto por la interacción con el plano de la luz polarizada o con otras moléculas quirales. Son moléculas quirales. La mezcla en cantidades equimolares de cada enantiómero en una solución se denomina mezcla racémica y es ópticamente inactiva.
Las moléculas que contienen un estereocentro (carbono asimétrico, centro esterogénico o centro quiral) son siempre ópticamente activas (quirales). Aunque esto no es cierto necesariamente para algunas moléculas con más de un esterocentro. Éste es el caso de las formas meso. Los enantiómeros tienen las mismas propiedades químicas y físicas, a excepción de su respuesta ante la luz polarizada (actividad óptica). Por ello se les denomina isómeros ópticos.
Las moléculas aquirales son ópticamente inactivas.
La rotación específica de la luz polarizada, que se mide por medio de un polarímetro, es una propiedad física característica de la estructura de cada enantiómero, de su concentración y del disolvente empleado en la medición.
http://es.wikipedia.org/wiki/Enanti%C3%B3mero
Diasteroisomeros
Los diastereoisómeros o diastereómeros son una clase de estereoisómeros tales, que no son superponibles pero tampoco imagen especular uno del otro, es decir, no son enantiómeros.
Los diastereoisómeros difieren en sus propiedades físicas y químicas.
Dentro del grupo de los diasterómeros se encuentran los isómeros cis-trans (antes conocido como Isómeros Geométricos), los confórmeros o isómeros conformacionales y, en las moléculas con varios centros quirales, los isómeros que pertenecen a distintas parejas de enantiómeros.
http://es.wikipedia.org/wiki/Diasterois%C3%B3mero
Isomeria Conformacional
En química orgánica, los isómeros conformacionales o confórmeros son estereoisómeros que se caracterizan por poder interconvertirse (modificar su orientación espacial, convirtiéndose en otro isómero de la misma molécula) a temperatura ambiente, por rotación en torno a enlaces simples anti, eclipsada o alternada. Son compuestos que, generalmente, no pueden aislarse físicamente, debido a su facilidad de interconversión. los isómeros son los compuestos que tienen la misma formula condensada o molecular, pero que tienen diferente estructura; por lo tanto son compuestos diferentes tanto en sus propiedades físicas como química, existen diferentes tipos de isomería, de cadena, de posición, geométrica o isomería cis-trans, de función y óptica. los isómeros sirven para saber la diferencia en propiedades físicas y química de un compuesto, por ejemplo: no es lo mismo la D-glucosa a la L-glucosa (isomería óptica) o el cis-butano al trans-butano.
http://es.wikipedia.org/wiki/Rotamero
Conformeros
Un confórmero es cada una de las estructuras de un mismo compuesto que se obtienen al girar, alrededor de enlaces simples, la parte de la molécula situada a un lado del enlace con respecto a la localizada al otro lado del mismo.
El análisis conformacional es la exploración de todos los confórmeros que se pueden obtener de una molécula dada al realizar torsiones alrededor de enlaces sencillos (grados de libertad conformacionales), observando los cambios en la energía molecular asociados a esas torsiones.
http://es.wikipedia.org/wiki/Conf%C3%B3rmero
-Anfoteros
Isomeror Geometricos Cis y Trans
La isomería cis-trans (o isomería geométrica) es un tipo de estereoisomería de los alquenos y cicloalcanos. Se distingue entre el isómero cis, en el que los sustituyentes están en el mismo lado del doble enlace o en la misma cara del cicloalcano, y el isómero trans, en el que están en el lado opuesto del doble enlace o en caras opuestas del cicloalcano.
http://es.wikipedia.org/wiki/Isomer%C3%ADa_cis-trans
-Fuerzas Intermoleculares
Carbono Asimetrico
Un carbono asimétrico o carbono quiral es un átomo de carbono que está enlazado con cuatro elementos diferentes. Puede presentarse en algunos compuestos orgánicos, sobre todos en aquellos que están presentes en los seres vivos, como los carbohidratos.
La presencia de uno o varios átomos de carbono asimétrico en un compuesto químico es responsable de la existencia de isomería óptica. Cada una de las dos estructuras diferentes que pueden formarse tienen los mismos átomos y los mismos enlaces pero no pueden superponerse una sobre otra, como ocurre con las dos manos de una persona. Se llaman enantiómeros y se diferencian en la dirección en la que desvían la luz polarizada por lo que se llaman formas ópticamente activas.
http://es.wikipedia.org/wiki/Carbono_quiral
Puente de Hidrogeno
Enlace de hidrógeno en el que el núcleo de hidrógeno está exactamente a mitad de camino entre dos átomos del mismo elemento. La fuerza del enlace a cada uno de estos átomos es igual. Constituye un ejemplo de un enlace de tres centros y dos electrones. Este tipo de enlace es mucho más fuerte que los enlaces de hidrógeno "normales". El orden efectivo de enlace es 0.5, así que su fuerza es comparable a un enlace covalente. Se ha visto en hielo a altas presiones, y también en la fase sólida de muchos ácidos anhidros, como el fluoruro de hidrógeno y el ácido fórmico a altas presiones.
Cada átomo de hidrógeno forma un enlace covalente parcial con dos átomos, en vez de con uno. . Se forman bajas barreras de enlace de hidrógeno cuando la distancia entre dos heteroátomos es muy pequeña.
Fuerzas de Van Der Wallas
la fuerza de van der Waals (o interacción de van der Waals), denominada así en honor al científico holandés Johannes Diderik van der Waals, es la fuerza atractiva o repulsiva entre moléculas (o entre partes de una misma molécula) distintas a aquellas debidas al enlace covalente o a la interacción electrostática de iones con otros o con moléculas neutras y son relativamente débiles comparadas con los enlaces químicos normales, pero juegan un rol fundamental en campos tan diversos como química supramolecular, biología estructural, ciencia de polímeros, nanotecnología, ciencia de superficies, y física de materia condensada. Las fuerzas de van der Waals definen el carácter químico de muchos compuestos orgánicos. También definen la solubilidad de sustancias orgánicas en medios polares y no polares. En los alcoholes inferiores, las propiedades del grupo polar hidróxilo dominan a las débiles fuerzas intermoleculares de van der Waals. En los alcoholes superiores, las propiedades del radical alquílico apolar (R) dominan y definen la solubilidad. Las fuerzas de van der Waals crecen con la longitud de la parte no polar de la sustancia.
Las fuerzas de van der Waals incluyen a atracciones entre átomos, moléculas, y superficies. Difieren del enlace covalente y del enlace iónico en que están causados por correlaciones en las polarizaciones fluctuantes de partículas cercanas (una consecuencia de la dinámica cuántica). Las fuerzas intermoleculares tienen cuatro contribuciones importantes. En general, un potencial intermolecular tiene un componente repulsivo (que evita el colapso de las moléculas debido a que al acercarse las entidades unas a otras las repulsiones dominan). También tiene un componente atractivo que, a su vez, consiste de tres contribuciones distintas:
1. La primera fuente de atracción es la interacción electrostática, también denominada interacción de Keesom o fuerza de Keesom, en honor a Willem Hendrik Keesom.
2. La segunda fuente de atracción es la inducción (también denominada polarización), que es la interacción entre un ultipolo permanente en una molécula, con un multipolo inducido en otra. Esta interacción se mide algunas veces en debyes, en honor a Peter Debye.
3. La tercera atracción suele ser denominada en honor a Fritz London que la denominaba dispersión. Es la única atracción experimentada por átomos no polares, pero opera entre cualquier par de moléculas, sin importar su simetría.
http://es.wikipedia.org/wiki/Fuerzas_de_van_der_Waals
Suscribirse a:
Entradas (Atom)