Estructura de las moléculas Orgánicas
-Orbitales Atómicos
Son isocapas de varios orbitales atómicos y algunos orbitales son visibles
Ejemplos en la pag de http://www.chm.davidson.edu/vce/atomicorbitals/ao.html
http://www.chm.davidson.edu/vce/atomicorbitals/AtomicOrbitals.html
-Orbitales Híbridos
El origen y significancia de los orbitales híbridos esta explicado y ilustrado con la densidad del electrón y la energía en diagramas
ejemplos en:
http://www.chm.davidson.edu/vce/atomicorbitals/hybrid.html
http://www.chm.davidson.edu/vce/atomicorbitals/AtomicOrbitals.html
-Geometría de los Enlaces Sencillos, dobles y Triples
La forma geométrica u organización tridimensional de los átomos de las moléculas tiene efecto sobre las propiedades físicas (densidad, punto de ebullición, punto de fusión, etc.) y propiedades químicas (tipo de reacciones, velocidad de reacción) de los compuestos.
Los electrones de valencia enlazados y no enlazados de cada átomo se repelen entre si, produciendo que los átomos a los cuales están enlazados se mantengan separados.
Las formas moleculares son tales que las repulsiones sean mínimas.
El modelo de la Repulsión de los Pares de Electrones de la Capa de Valencia (RPECV) está basado en estos hechos:
Los enlaces dobles y triples deben ser tratados como si fuesen enlaces simples.
Si una molécula tiene dos o más estructuras resonantes, el modelo RPECV se puede aplicar a cualquiera de ellas.
Cuando las moléculas tienen enlaces polares, las formas geométricas tienen cargas positivas y negativas que tornan la molécula un dipolo, siendo la polaridad medida por el momento di polar Enlaces químicos
, siendo Q la cantidad de carga de cada polo en Coulomb y r la distancia entre las cargas en metros.
Mas info:
http://www.chm.davidson.edu/vce/atomicorbitals/index.html
-Tetra valencia del Carbono
Los átomos de carbono tiene cuatro electrones en su última capa, de modo que formando cuatro enlaces covalentes con otros átomos, consigue completar su octeto.
TIPOS DE ENLACE
- 4 Enlaces sencillos C-H, - Ángulos de enlace 109º28′ - Orbitales híbridos sp3
- 1 Enlace doble C=C - Ángulos de enlace de 120º - Orbitales híbridos sp2
-1 enlace triple -Ángulo de enlace de 180º - Orbitales híbridos sp
-Isomeros Planos
-Formulas Quimicas Organicas
La fórmula química es la representación de los elementos que forman un compuesto y la proporción en que se encuentran, o del número de átomos que forman una molécula. También puede darnos información adicional como la manera en que se unen dichos átomos mediante enlaces químicos e incluso su distribución en el espacio. Para nombrarlas, se emplean las reglas de la nomenclatura o formulación química. Existen varios tipos de fórmulas químicas
Formula Estructural
La fórmula estructural es similar a las anteriores pero señalando la geometría espacial de la molécula mediante la indicación de distancias, ángulos o el empleo de perspectivas en diagramas bi- o tridimensionales.
Formula Desarrollada
La fórmula desarrollada es similar a la anterior pero indicando todos los enlaces. Aunque se representa sobre un plano, permite observar ciertos detalles de la estructura que resultan de gran interés. Se llaman también estructuras de Kekulé.
Formula Semidesarrollada
La fórmula semidesarrollada es similar a la anterior pero indicando los enlaces entre los diferentes grupos de átomos para resaltar, sobre todo, los grupos funcionales que aparecen en la molécula. Es muy usada en química orgánica, donde se puede visualizar fácilmente la estructura de la cadena carbonada y los diferentes sustituyentes. Así, la glucosa tendría la siguiente fórmula semidesarrollada:
CH2OH − CHOH − CHOH − CHOH − CHOH − CHO
http://es.wikipedia.org/wiki/F%C3%B3rmula_qu%C3%ADmica
-Cadena de Posision, Cadena y Tautomeria
Isomería de posición
La presentan aquellos compuestos que poseen el mismo esqueleto carbonado pero en los que el grupo funcional o el sustituyente ocupa diferente posición.
El C4H10O puede corresponder a dos sustancias isómeras que se diferencian en la posición del grupo OH.
Isomería de función
Varía el grupo funcional, conservando el esqueleto carbonado.
Esta isomería la presentan ciertos grupos de compuestos relacionados como: los alcoholes y éteres, los acidos y ésteres, y también los aldehídos y cetonas.
-Isomeros Espacioales
Tautomería
Es un tipo especial de isomería en la que existe transposición de un átomo entre las dos estructuras, generalmente hidrógeno,existiendo además un fácil equilibrio entre ambas formas tautómeras[2] Un ejemplo de la misma es la tautomería ceto-enólica en la que existe equilibrio entre un compuesto con grupo OH unido a uno de los átomos de carbono de un doble enlace C=C, y un compuesto con el grupo carbonilo intermedio, C=O típico de las cetonas, con transposición de un átomo de hidrógeno.
Isomeria Optica
Enantiomeros
En química se dice que dos estereoisómeros son enantiómeros si la imagen especular de uno no puede ser superpuesta con la del otro. Dicho de otra forma: un enantiómero es una imagen especular no superponible de sí mismo. Tienen las mismas propiedades físicas y químicas, excepto por la interacción con el plano de la luz polarizada o con otras moléculas quirales. Son moléculas quirales. La mezcla en cantidades equimolares de cada enantiómero en una solución se denomina mezcla racémica y es ópticamente inactiva.
Las moléculas que contienen un estereocentro (carbono asimétrico, centro esterogénico o centro quiral) son siempre ópticamente activas (quirales). Aunque esto no es cierto necesariamente para algunas moléculas con más de un esterocentro. Éste es el caso de las formas meso. Los enantiómeros tienen las mismas propiedades químicas y físicas, a excepción de su respuesta ante la luz polarizada (actividad óptica). Por ello se les denomina isómeros ópticos.
Las moléculas aquirales son ópticamente inactivas.
La rotación específica de la luz polarizada, que se mide por medio de un polarímetro, es una propiedad física característica de la estructura de cada enantiómero, de su concentración y del disolvente empleado en la medición.
http://es.wikipedia.org/wiki/Enanti%C3%B3mero
Diasteroisomeros
Los diastereoisómeros o diastereómeros son una clase de estereoisómeros tales, que no son superponibles pero tampoco imagen especular uno del otro, es decir, no son enantiómeros.
Los diastereoisómeros difieren en sus propiedades físicas y químicas.
Dentro del grupo de los diasterómeros se encuentran los isómeros cis-trans (antes conocido como Isómeros Geométricos), los confórmeros o isómeros conformacionales y, en las moléculas con varios centros quirales, los isómeros que pertenecen a distintas parejas de enantiómeros.
http://es.wikipedia.org/wiki/Diasterois%C3%B3mero
Isomeria Conformacional
En química orgánica, los isómeros conformacionales o confórmeros son estereoisómeros que se caracterizan por poder interconvertirse (modificar su orientación espacial, convirtiéndose en otro isómero de la misma molécula) a temperatura ambiente, por rotación en torno a enlaces simples anti, eclipsada o alternada. Son compuestos que, generalmente, no pueden aislarse físicamente, debido a su facilidad de interconversión. los isómeros son los compuestos que tienen la misma formula condensada o molecular, pero que tienen diferente estructura; por lo tanto son compuestos diferentes tanto en sus propiedades físicas como química, existen diferentes tipos de isomería, de cadena, de posición, geométrica o isomería cis-trans, de función y óptica. los isómeros sirven para saber la diferencia en propiedades físicas y química de un compuesto, por ejemplo: no es lo mismo la D-glucosa a la L-glucosa (isomería óptica) o el cis-butano al trans-butano.
http://es.wikipedia.org/wiki/Rotamero
Conformeros
Un confórmero es cada una de las estructuras de un mismo compuesto que se obtienen al girar, alrededor de enlaces simples, la parte de la molécula situada a un lado del enlace con respecto a la localizada al otro lado del mismo.
El análisis conformacional es la exploración de todos los confórmeros que se pueden obtener de una molécula dada al realizar torsiones alrededor de enlaces sencillos (grados de libertad conformacionales), observando los cambios en la energía molecular asociados a esas torsiones.
http://es.wikipedia.org/wiki/Conf%C3%B3rmero
-Anfoteros
Isomeror Geometricos Cis y Trans
La isomería cis-trans (o isomería geométrica) es un tipo de estereoisomería de los alquenos y cicloalcanos. Se distingue entre el isómero cis, en el que los sustituyentes están en el mismo lado del doble enlace o en la misma cara del cicloalcano, y el isómero trans, en el que están en el lado opuesto del doble enlace o en caras opuestas del cicloalcano.
http://es.wikipedia.org/wiki/Isomer%C3%ADa_cis-trans
-Fuerzas Intermoleculares
Carbono Asimetrico
Un carbono asimétrico o carbono quiral es un átomo de carbono que está enlazado con cuatro elementos diferentes. Puede presentarse en algunos compuestos orgánicos, sobre todos en aquellos que están presentes en los seres vivos, como los carbohidratos.
La presencia de uno o varios átomos de carbono asimétrico en un compuesto químico es responsable de la existencia de isomería óptica. Cada una de las dos estructuras diferentes que pueden formarse tienen los mismos átomos y los mismos enlaces pero no pueden superponerse una sobre otra, como ocurre con las dos manos de una persona. Se llaman enantiómeros y se diferencian en la dirección en la que desvían la luz polarizada por lo que se llaman formas ópticamente activas.
http://es.wikipedia.org/wiki/Carbono_quiral
Puente de Hidrogeno
Enlace de hidrógeno en el que el núcleo de hidrógeno está exactamente a mitad de camino entre dos átomos del mismo elemento. La fuerza del enlace a cada uno de estos átomos es igual. Constituye un ejemplo de un enlace de tres centros y dos electrones. Este tipo de enlace es mucho más fuerte que los enlaces de hidrógeno "normales". El orden efectivo de enlace es 0.5, así que su fuerza es comparable a un enlace covalente. Se ha visto en hielo a altas presiones, y también en la fase sólida de muchos ácidos anhidros, como el fluoruro de hidrógeno y el ácido fórmico a altas presiones.
Cada átomo de hidrógeno forma un enlace covalente parcial con dos átomos, en vez de con uno. . Se forman bajas barreras de enlace de hidrógeno cuando la distancia entre dos heteroátomos es muy pequeña.
Fuerzas de Van Der Wallas
la fuerza de van der Waals (o interacción de van der Waals), denominada así en honor al científico holandés Johannes Diderik van der Waals, es la fuerza atractiva o repulsiva entre moléculas (o entre partes de una misma molécula) distintas a aquellas debidas al enlace covalente o a la interacción electrostática de iones con otros o con moléculas neutras y son relativamente débiles comparadas con los enlaces químicos normales, pero juegan un rol fundamental en campos tan diversos como química supramolecular, biología estructural, ciencia de polímeros, nanotecnología, ciencia de superficies, y física de materia condensada. Las fuerzas de van der Waals definen el carácter químico de muchos compuestos orgánicos. También definen la solubilidad de sustancias orgánicas en medios polares y no polares. En los alcoholes inferiores, las propiedades del grupo polar hidróxilo dominan a las débiles fuerzas intermoleculares de van der Waals. En los alcoholes superiores, las propiedades del radical alquílico apolar (R) dominan y definen la solubilidad. Las fuerzas de van der Waals crecen con la longitud de la parte no polar de la sustancia.
Las fuerzas de van der Waals incluyen a atracciones entre átomos, moléculas, y superficies. Difieren del enlace covalente y del enlace iónico en que están causados por correlaciones en las polarizaciones fluctuantes de partículas cercanas (una consecuencia de la dinámica cuántica). Las fuerzas intermoleculares tienen cuatro contribuciones importantes. En general, un potencial intermolecular tiene un componente repulsivo (que evita el colapso de las moléculas debido a que al acercarse las entidades unas a otras las repulsiones dominan). También tiene un componente atractivo que, a su vez, consiste de tres contribuciones distintas:
1. La primera fuente de atracción es la interacción electrostática, también denominada interacción de Keesom o fuerza de Keesom, en honor a Willem Hendrik Keesom.
2. La segunda fuente de atracción es la inducción (también denominada polarización), que es la interacción entre un ultipolo permanente en una molécula, con un multipolo inducido en otra. Esta interacción se mide algunas veces en debyes, en honor a Peter Debye.
3. La tercera atracción suele ser denominada en honor a Fritz London que la denominaba dispersión. Es la única atracción experimentada por átomos no polares, pero opera entre cualquier par de moléculas, sin importar su simetría.
http://es.wikipedia.org/wiki/Fuerzas_de_van_der_Waals
Hey sñor.......pues ya tiene su blog, hay que hacerlo mas dinamico, hay que ponerle fotos, imagenes, formulas y videos..........
ResponderEliminarYUJO TENEMOS BLOGG
ResponderEliminarAHORA C0NKISTEMOS EL MUNDO WAAHAHAH!!!!!!!!!!!
:s